Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/Kalman/learning_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 % Make a point move in the 2D plane |
wolffd@0 | 2 % State = (x y xdot ydot). We only observe (x y). |
wolffd@0 | 3 % Generate data from this process, and try to learn the dynamics back. |
wolffd@0 | 4 |
wolffd@0 | 5 % X(t+1) = F X(t) + noise(Q) |
wolffd@0 | 6 % Y(t) = H X(t) + noise(R) |
wolffd@0 | 7 |
wolffd@0 | 8 ss = 4; % state size |
wolffd@0 | 9 os = 2; % observation size |
wolffd@0 | 10 F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]; |
wolffd@0 | 11 H = [1 0 0 0; 0 1 0 0]; |
wolffd@0 | 12 Q = 0.1*eye(ss); |
wolffd@0 | 13 R = 1*eye(os); |
wolffd@0 | 14 initx = [10 10 1 0]'; |
wolffd@0 | 15 initV = 10*eye(ss); |
wolffd@0 | 16 |
wolffd@0 | 17 seed = 1; |
wolffd@0 | 18 rand('state', seed); |
wolffd@0 | 19 randn('state', seed); |
wolffd@0 | 20 T = 100; |
wolffd@0 | 21 [x,y] = sample_lds(F, H, Q, R, initx, T); |
wolffd@0 | 22 |
wolffd@0 | 23 % Initializing the params to sensible values is crucial. |
wolffd@0 | 24 % Here, we use the true values for everything except F and H, |
wolffd@0 | 25 % which we initialize randomly (bad idea!) |
wolffd@0 | 26 % Lack of identifiability means the learned params. are often far from the true ones. |
wolffd@0 | 27 % All that EM guarantees is that the likelihood will increase. |
wolffd@0 | 28 F1 = randn(ss,ss); |
wolffd@0 | 29 H1 = randn(os,ss); |
wolffd@0 | 30 Q1 = Q; |
wolffd@0 | 31 R1 = R; |
wolffd@0 | 32 initx1 = initx; |
wolffd@0 | 33 initV1 = initV; |
wolffd@0 | 34 max_iter = 10; |
wolffd@0 | 35 [F2, H2, Q2, R2, initx2, initV2, LL] = learn_kalman(y, F1, H1, Q1, R1, initx1, initV1, max_iter); |
wolffd@0 | 36 |