annotate toolboxes/FullBNT-1.0.7/KPMtools/plotgauss2d.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function h=plotgauss2d(mu, Sigma)
wolffd@0 2 % PLOTGAUSS2D Plot a 2D Gaussian as an ellipse with optional cross hairs
wolffd@0 3 % h=plotgauss2(mu, Sigma)
wolffd@0 4 %
wolffd@0 5
wolffd@0 6 h = plotcov2(mu, Sigma);
wolffd@0 7 return;
wolffd@0 8
wolffd@0 9 %%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 10
wolffd@0 11 % PLOTCOV2 - Plots a covariance ellipse with major and minor axes
wolffd@0 12 % for a bivariate Gaussian distribution.
wolffd@0 13 %
wolffd@0 14 % Usage:
wolffd@0 15 % h = plotcov2(mu, Sigma[, OPTIONS]);
wolffd@0 16 %
wolffd@0 17 % Inputs:
wolffd@0 18 % mu - a 2 x 1 vector giving the mean of the distribution.
wolffd@0 19 % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
wolffd@0 20 % the covariance of the distribution (or the zero matrix).
wolffd@0 21 %
wolffd@0 22 % Options:
wolffd@0 23 % 'conf' - a scalar between 0 and 1 giving the confidence
wolffd@0 24 % interval (i.e., the fraction of probability mass to
wolffd@0 25 % be enclosed by the ellipse); default is 0.9.
wolffd@0 26 % 'num-pts' - the number of points to be used to plot the
wolffd@0 27 % ellipse; default is 100.
wolffd@0 28 %
wolffd@0 29 % This function also accepts options for PLOT.
wolffd@0 30 %
wolffd@0 31 % Outputs:
wolffd@0 32 % h - a vector of figure handles to the ellipse boundary and
wolffd@0 33 % its major and minor axes
wolffd@0 34 %
wolffd@0 35 % See also: PLOTCOV3
wolffd@0 36
wolffd@0 37 % Copyright (C) 2002 Mark A. Paskin
wolffd@0 38
wolffd@0 39 function h = plotcov2(mu, Sigma, varargin)
wolffd@0 40
wolffd@0 41 if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
wolffd@0 42 if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
wolffd@0 43
wolffd@0 44 [p, ...
wolffd@0 45 n, ...
wolffd@0 46 plot_opts] = process_options(varargin, 'conf', 0.9, ...
wolffd@0 47 'num-pts', 100);
wolffd@0 48 h = [];
wolffd@0 49 holding = ishold;
wolffd@0 50 if (Sigma == zeros(2, 2))
wolffd@0 51 z = mu;
wolffd@0 52 else
wolffd@0 53 % Compute the Mahalanobis radius of the ellipsoid that encloses
wolffd@0 54 % the desired probability mass.
wolffd@0 55 k = conf2mahal(p, 2);
wolffd@0 56 % The major and minor axes of the covariance ellipse are given by
wolffd@0 57 % the eigenvectors of the covariance matrix. Their lengths (for
wolffd@0 58 % the ellipse with unit Mahalanobis radius) are given by the
wolffd@0 59 % square roots of the corresponding eigenvalues.
wolffd@0 60 if (issparse(Sigma))
wolffd@0 61 [V, D] = eigs(Sigma);
wolffd@0 62 else
wolffd@0 63 [V, D] = eig(Sigma);
wolffd@0 64 end
wolffd@0 65 % Compute the points on the surface of the ellipse.
wolffd@0 66 t = linspace(0, 2*pi, n);
wolffd@0 67 u = [cos(t); sin(t)];
wolffd@0 68 w = (k * V * sqrt(D)) * u;
wolffd@0 69 z = repmat(mu, [1 n]) + w;
wolffd@0 70 % Plot the major and minor axes.
wolffd@0 71 L = k * sqrt(diag(D));
wolffd@0 72 h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
wolffd@0 73 [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
wolffd@0 74 hold on;
wolffd@0 75 h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
wolffd@0 76 [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
wolffd@0 77 end
wolffd@0 78
wolffd@0 79 h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
wolffd@0 80 if (~holding) hold off; end
wolffd@0 81
wolffd@0 82 %%%%%%%%%%%%
wolffd@0 83
wolffd@0 84 % CONF2MAHAL - Translates a confidence interval to a Mahalanobis
wolffd@0 85 % distance. Consider a multivariate Gaussian
wolffd@0 86 % distribution of the form
wolffd@0 87 %
wolffd@0 88 % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C)))
wolffd@0 89 %
wolffd@0 90 % where MD(x, m, P) is the Mahalanobis distance from x
wolffd@0 91 % to m under P:
wolffd@0 92 %
wolffd@0 93 % MD(x, m, P) = (x - m) * P * (x - m)'
wolffd@0 94 %
wolffd@0 95 % A particular Mahalanobis distance k identifies an
wolffd@0 96 % ellipsoid centered at the mean of the distribution.
wolffd@0 97 % The confidence interval associated with this ellipsoid
wolffd@0 98 % is the probability mass enclosed by it. Similarly,
wolffd@0 99 % a particular confidence interval uniquely determines
wolffd@0 100 % an ellipsoid with a fixed Mahalanobis distance.
wolffd@0 101 %
wolffd@0 102 % If X is an d dimensional Gaussian-distributed vector,
wolffd@0 103 % then the Mahalanobis distance of X is distributed
wolffd@0 104 % according to the Chi-squared distribution with d
wolffd@0 105 % degrees of freedom. Thus, the Mahalanobis distance is
wolffd@0 106 % determined by evaluating the inverse cumulative
wolffd@0 107 % distribution function of the chi squared distribution
wolffd@0 108 % up to the confidence value.
wolffd@0 109 %
wolffd@0 110 % Usage:
wolffd@0 111 %
wolffd@0 112 % m = conf2mahal(c, d);
wolffd@0 113 %
wolffd@0 114 % Inputs:
wolffd@0 115 %
wolffd@0 116 % c - the confidence interval
wolffd@0 117 % d - the number of dimensions of the Gaussian distribution
wolffd@0 118 %
wolffd@0 119 % Outputs:
wolffd@0 120 %
wolffd@0 121 % m - the Mahalanobis radius of the ellipsoid enclosing the
wolffd@0 122 % fraction c of the distribution's probability mass
wolffd@0 123 %
wolffd@0 124 % See also: MAHAL2CONF
wolffd@0 125
wolffd@0 126 % Copyright (C) 2002 Mark A. Paskin
wolffd@0 127
wolffd@0 128 function m = conf2mahal(c, d)
wolffd@0 129
wolffd@0 130 m = chi2inv(c, d); % matlab stats toolbox