wolffd@0
|
1 function [alpha, beta, gamma, loglik, xi_summed, gamma2] = fwdback(init_state_distrib, ...
|
wolffd@0
|
2 transmat, obslik, varargin)
|
wolffd@0
|
3 % FWDBACK Compute the posterior probs. in an HMM using the forwards backwards algo.
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(init_state_distrib, transmat, obslik, ...)
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % Notation:
|
wolffd@0
|
8 % Y(t) = observation, Q(t) = hidden state, M(t) = mixture variable (for MOG outputs)
|
wolffd@0
|
9 % A(t) = discrete input (action) (for POMDP models)
|
wolffd@0
|
10 %
|
wolffd@0
|
11 % INPUT:
|
wolffd@0
|
12 % init_state_distrib(i) = Pr(Q(1) = i)
|
wolffd@0
|
13 % transmat(i,j) = Pr(Q(t) = j | Q(t-1)=i)
|
wolffd@0
|
14 % or transmat{a}(i,j) = Pr(Q(t) = j | Q(t-1)=i, A(t-1)=a) if there are discrete inputs
|
wolffd@0
|
15 % obslik(i,t) = Pr(Y(t)| Q(t)=i)
|
wolffd@0
|
16 % (Compute obslik using eval_pdf_xxx on your data sequence first.)
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % Optional parameters may be passed as 'param_name', param_value pairs.
|
wolffd@0
|
19 % Parameter names are shown below; default values in [] - if none, argument is mandatory.
|
wolffd@0
|
20 %
|
wolffd@0
|
21 % For HMMs with MOG outputs: if you want to compute gamma2, you must specify
|
wolffd@0
|
22 % 'obslik2' - obslik(i,j,t) = Pr(Y(t)| Q(t)=i,M(t)=j) []
|
wolffd@0
|
23 % 'mixmat' - mixmat(i,j) = Pr(M(t) = j | Q(t)=i) []
|
wolffd@0
|
24 %
|
wolffd@0
|
25 % For HMMs with discrete inputs:
|
wolffd@0
|
26 % 'act' - act(t) = action performed at step t
|
wolffd@0
|
27 %
|
wolffd@0
|
28 % Optional arguments:
|
wolffd@0
|
29 % 'fwd_only' - if 1, only do a forwards pass and set beta=[], gamma2=[] [0]
|
wolffd@0
|
30 % 'scaled' - if 1, normalize alphas and betas to prevent underflow [1]
|
wolffd@0
|
31 % 'maximize' - if 1, use max-product instead of sum-product [0]
|
wolffd@0
|
32 %
|
wolffd@0
|
33 % OUTPUTS:
|
wolffd@0
|
34 % alpha(i,t) = p(Q(t)=i | y(1:t)) (or p(Q(t)=i, y(1:t)) if scaled=0)
|
wolffd@0
|
35 % beta(i,t) = p(y(t+1:T) | Q(t)=i)*p(y(t+1:T)|y(1:t)) (or p(y(t+1:T) | Q(t)=i) if scaled=0)
|
wolffd@0
|
36 % gamma(i,t) = p(Q(t)=i | y(1:T))
|
wolffd@0
|
37 % loglik = log p(y(1:T))
|
wolffd@0
|
38 % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:T)) - NO LONGER COMPUTED
|
wolffd@0
|
39 % xi_summed(i,j) = sum_{t=}^{T-1} xi(i,j,t) - changed made by Herbert Jaeger
|
wolffd@0
|
40 % gamma2(j,k,t) = p(Q(t)=j, M(t)=k | y(1:T)) (only for MOG outputs)
|
wolffd@0
|
41 %
|
wolffd@0
|
42 % If fwd_only = 1, these become
|
wolffd@0
|
43 % alpha(i,t) = p(Q(t)=i | y(1:t))
|
wolffd@0
|
44 % beta = []
|
wolffd@0
|
45 % gamma(i,t) = p(Q(t)=i | y(1:t))
|
wolffd@0
|
46 % xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:t))
|
wolffd@0
|
47 % gamma2 = []
|
wolffd@0
|
48 %
|
wolffd@0
|
49 % Note: we only compute xi if it is requested as a return argument, since it can be very large.
|
wolffd@0
|
50 % Similarly, we only compute gamma2 on request (and if using MOG outputs).
|
wolffd@0
|
51 %
|
wolffd@0
|
52 % Examples:
|
wolffd@0
|
53 %
|
wolffd@0
|
54 % [alpha, beta, gamma, loglik] = fwdback(pi, A, multinomial_prob(sequence, B));
|
wolffd@0
|
55 %
|
wolffd@0
|
56 % [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat);
|
wolffd@0
|
57 % [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(pi, A, B, 'obslik2', B2, 'mixmat', mixmat);
|
wolffd@0
|
58
|
wolffd@0
|
59 if nargout >= 5, compute_xi = 1; else compute_xi = 0; end
|
wolffd@0
|
60 if nargout >= 6, compute_gamma2 = 1; else compute_gamma2 = 0; end
|
wolffd@0
|
61
|
wolffd@0
|
62 [obslik2, mixmat, fwd_only, scaled, act, maximize, compute_xi, compute_gamma2] = ...
|
wolffd@0
|
63 process_options(varargin, ...
|
wolffd@0
|
64 'obslik2', [], 'mixmat', [], ...
|
wolffd@0
|
65 'fwd_only', 0, 'scaled', 1, 'act', [], 'maximize', 0, ...
|
wolffd@0
|
66 'compute_xi', compute_xi, 'compute_gamma2', compute_gamma2);
|
wolffd@0
|
67
|
wolffd@0
|
68 [Q T] = size(obslik);
|
wolffd@0
|
69
|
wolffd@0
|
70 if isempty(obslik2)
|
wolffd@0
|
71 compute_gamma2 = 0;
|
wolffd@0
|
72 end
|
wolffd@0
|
73
|
wolffd@0
|
74 if isempty(act)
|
wolffd@0
|
75 act = ones(1,T);
|
wolffd@0
|
76 transmat = { transmat } ;
|
wolffd@0
|
77 end
|
wolffd@0
|
78
|
wolffd@0
|
79 scale = ones(1,T);
|
wolffd@0
|
80
|
wolffd@0
|
81 % scale(t) = Pr(O(t) | O(1:t-1)) = 1/c(t) as defined by Rabiner (1989).
|
wolffd@0
|
82 % Hence prod_t scale(t) = Pr(O(1)) Pr(O(2)|O(1)) Pr(O(3) | O(1:2)) ... = Pr(O(1), ... ,O(T))
|
wolffd@0
|
83 % or log P = sum_t log scale(t).
|
wolffd@0
|
84 % Rabiner suggests multiplying beta(t) by scale(t), but we can instead
|
wolffd@0
|
85 % normalise beta(t) - the constants will cancel when we compute gamma.
|
wolffd@0
|
86
|
wolffd@0
|
87 loglik = 0;
|
wolffd@0
|
88
|
wolffd@0
|
89 alpha = zeros(Q,T);
|
wolffd@0
|
90 gamma = zeros(Q,T);
|
wolffd@0
|
91 if compute_xi
|
wolffd@0
|
92 xi_summed = zeros(Q,Q);
|
wolffd@0
|
93 else
|
wolffd@0
|
94 xi_summed = [];
|
wolffd@0
|
95 end
|
wolffd@0
|
96
|
wolffd@0
|
97 %%%%%%%%% Forwards %%%%%%%%%%
|
wolffd@0
|
98
|
wolffd@0
|
99 t = 1;
|
wolffd@0
|
100 alpha(:,1) = init_state_distrib(:) .* obslik(:,t);
|
wolffd@0
|
101 if scaled
|
wolffd@0
|
102 %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t));
|
wolffd@0
|
103 [alpha(:,t), scale(t)] = normalise(alpha(:,t));
|
wolffd@0
|
104 end
|
wolffd@0
|
105 assert(approxeq(sum(alpha(:,t)),1))
|
wolffd@0
|
106 for t=2:T
|
wolffd@0
|
107 %trans = transmat(:,:,act(t-1))';
|
wolffd@0
|
108 trans = transmat{act(t-1)};
|
wolffd@0
|
109 if maximize
|
wolffd@0
|
110 m = max_mult(trans', alpha(:,t-1));
|
wolffd@0
|
111 %A = repmat(alpha(:,t-1), [1 Q]);
|
wolffd@0
|
112 %m = max(trans .* A, [], 1);
|
wolffd@0
|
113 else
|
wolffd@0
|
114 m = trans' * alpha(:,t-1);
|
wolffd@0
|
115 end
|
wolffd@0
|
116 alpha(:,t) = m(:) .* obslik(:,t);
|
wolffd@0
|
117 if scaled
|
wolffd@0
|
118 %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t));
|
wolffd@0
|
119 [alpha(:,t), scale(t)] = normalise(alpha(:,t));
|
wolffd@0
|
120 end
|
wolffd@0
|
121 if compute_xi & fwd_only % useful for online EM
|
wolffd@0
|
122 %xi(:,:,t-1) = normaliseC((alpha(:,t-1) * obslik(:,t)') .* trans);
|
wolffd@0
|
123 xi_summed = xi_summed + normalise((alpha(:,t-1) * obslik(:,t)') .* trans);
|
wolffd@0
|
124 end
|
wolffd@0
|
125 assert(approxeq(sum(alpha(:,t)),1))
|
wolffd@0
|
126 end
|
wolffd@0
|
127 if scaled
|
wolffd@0
|
128 if any(scale==0)
|
wolffd@0
|
129 loglik = -inf;
|
wolffd@0
|
130 else
|
wolffd@0
|
131 loglik = sum(log(scale));
|
wolffd@0
|
132 end
|
wolffd@0
|
133 else
|
wolffd@0
|
134 loglik = log(sum(alpha(:,T)));
|
wolffd@0
|
135 end
|
wolffd@0
|
136
|
wolffd@0
|
137 if fwd_only
|
wolffd@0
|
138 gamma = alpha;
|
wolffd@0
|
139 beta = [];
|
wolffd@0
|
140 gamma2 = [];
|
wolffd@0
|
141 return;
|
wolffd@0
|
142 end
|
wolffd@0
|
143
|
wolffd@0
|
144 %%%%%%%%% Backwards %%%%%%%%%%
|
wolffd@0
|
145
|
wolffd@0
|
146 beta = zeros(Q,T);
|
wolffd@0
|
147 if compute_gamma2
|
wolffd@0
|
148 M = size(mixmat, 2);
|
wolffd@0
|
149 gamma2 = zeros(Q,M,T);
|
wolffd@0
|
150 else
|
wolffd@0
|
151 gamma2 = [];
|
wolffd@0
|
152 end
|
wolffd@0
|
153
|
wolffd@0
|
154 beta(:,T) = ones(Q,1);
|
wolffd@0
|
155 %gamma(:,T) = normaliseC(alpha(:,T) .* beta(:,T));
|
wolffd@0
|
156 gamma(:,T) = normalise(alpha(:,T) .* beta(:,T));
|
wolffd@0
|
157 t=T;
|
wolffd@0
|
158 if compute_gamma2
|
wolffd@0
|
159 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing
|
wolffd@0
|
160 gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]);
|
wolffd@0
|
161 %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); % wrong!
|
wolffd@0
|
162 end
|
wolffd@0
|
163 for t=T-1:-1:1
|
wolffd@0
|
164 b = beta(:,t+1) .* obslik(:,t+1);
|
wolffd@0
|
165 %trans = transmat(:,:,act(t));
|
wolffd@0
|
166 trans = transmat{act(t)};
|
wolffd@0
|
167 if maximize
|
wolffd@0
|
168 B = repmat(b(:)', Q, 1);
|
wolffd@0
|
169 beta(:,t) = max(trans .* B, [], 2);
|
wolffd@0
|
170 else
|
wolffd@0
|
171 beta(:,t) = trans * b;
|
wolffd@0
|
172 end
|
wolffd@0
|
173 if scaled
|
wolffd@0
|
174 %beta(:,t) = normaliseC(beta(:,t));
|
wolffd@0
|
175 beta(:,t) = normalise(beta(:,t));
|
wolffd@0
|
176 end
|
wolffd@0
|
177 %gamma(:,t) = normaliseC(alpha(:,t) .* beta(:,t));
|
wolffd@0
|
178 gamma(:,t) = normalise(alpha(:,t) .* beta(:,t));
|
wolffd@0
|
179 if compute_xi
|
wolffd@0
|
180 %xi(:,:,t) = normaliseC((trans .* (alpha(:,t) * b')));
|
wolffd@0
|
181 xi_summed = xi_summed + normalise((trans .* (alpha(:,t) * b')));
|
wolffd@0
|
182 end
|
wolffd@0
|
183 if compute_gamma2
|
wolffd@0
|
184 denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing
|
wolffd@0
|
185 gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]);
|
wolffd@0
|
186 %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]));
|
wolffd@0
|
187 end
|
wolffd@0
|
188 end
|
wolffd@0
|
189
|
wolffd@0
|
190 % We now explain the equation for gamma2
|
wolffd@0
|
191 % Let zt=y(1:t-1,t+1:T) be all observations except y(t)
|
wolffd@0
|
192 % gamma2(Q,M,t) = P(Qt,Mt|yt,zt) = P(yt|Qt,Mt,zt) P(Qt,Mt|zt) / P(yt|zt)
|
wolffd@0
|
193 % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|zt) / P(yt|zt)
|
wolffd@0
|
194 % Now gamma(Q,t) = P(Qt|yt,zt) = P(yt|Qt) P(Qt|zt) / P(yt|zt)
|
wolffd@0
|
195 % hence
|
wolffd@0
|
196 % P(Qt,Mt|yt,zt) = P(yt|Qt,Mt) P(Mt|Qt) [P(Qt|yt,zt) P(yt|zt) / P(yt|Qt)] / P(yt|zt)
|
wolffd@0
|
197 % = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|yt,zt) / P(yt|Qt)
|