wolffd@0
|
1 % cr_: training correct
|
wolffd@0
|
2 % cr : testing correct
|
wolffd@0
|
3 feature_file = 'rel_music_raw_features+simdata_ISMIR12';
|
wolffd@0
|
4 vars = whos('-file', feature_file);
|
wolffd@0
|
5 A = load(feature_file,vars(1).name,vars(2).name,vars(3).name,vars(4).name);
|
wolffd@0
|
6 raw_features = A.(vars(1).name);
|
wolffd@0
|
7 indices = A.(vars(2).name);
|
wolffd@0
|
8 tst_inx = A.(vars(3).name);
|
wolffd@0
|
9 trn_inx = A.(vars(4).name);
|
wolffd@0
|
10 %
|
wolffd@0
|
11 % figure(1); imagesc(raw_features);colorbar;
|
wolffd@0
|
12 mod = load('res_48');
|
wolffd@0
|
13 features = logistic(raw_features*mod.W_max{1} + repmat(mod.hB_max{1},size(raw_features,1),1));
|
wolffd@0
|
14 % figure(2); imagesc(features);colorbar;
|
wolffd@0
|
15
|
wolffd@0
|
16 num_case = size(trn_inx,1);
|
wolffd@0
|
17 [trnd_12 trnd_13] = subspace_distances(trn_inx,features,indices,1,1);
|
wolffd@0
|
18 [tstd_12 tstd_13] = subspace_distances(tst_inx,features,indices,1,1);
|
wolffd@0
|
19 cr_ = 0; % correct rate for training
|
wolffd@0
|
20 cr = 0; % correct rate for testing
|
wolffd@0
|
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
22 %% CODE HERE %%
|
wolffd@0
|
23 %[Ws cr_] = gradient_ascent(trnd_12,trnd_13,0.1,0.1,0.00002); %eNum = 10
|
wolffd@0
|
24 [Ws cr_] = gradient_ascent(trnd_12,trnd_13,0.05,0.01,0.00002);
|
wolffd@0
|
25
|
wolffd@0
|
26 for i = 1:num_case
|
wolffd@0
|
27 cr = cr + sum((tstd_13{i}-tstd_12{i})*Ws{i}' > 0, 1)/size(tstd_12{i},1);
|
wolffd@0
|
28 end
|
wolffd@0
|
29 cr = cr/num_case;
|
wolffd@0
|
30 %% Check the result
|
wolffd@0
|
31 fprintf('Gradient RBM Test / Train Result=%f / %f\n',cr*100,cr_*100);
|
wolffd@0
|
32 %fprintf('Training=%f Testing=%f\n',cr_,cr); |