annotate reproduce_AES53rd/rerun_figure2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % ---
wolffd@0 2 % This script plots 50-dimensional RBM features as in figure 2 of
wolffd@0 3 %
wolffd@0 4 % Feature Preprocessing with RBMs for Music Similarity Learning
wolffd@0 5 % Son N. Tran, Daniel Wolff, Tillman Weyde, Artur Garcez, AES53rd
wolffd@0 6 % conference
wolffd@0 7 % ---
wolffd@0 8
wolffd@0 9 % cr_: training correct
wolffd@0 10 % cr : testing correct
wolffd@0 11 feature_file = 'rel_music_raw_features+simdata_ISMIR12';
wolffd@0 12 vars = whos('-file', feature_file);
wolffd@0 13 A = load(feature_file,vars(1).name,vars(2).name,vars(3).name,vars(4).name);
wolffd@0 14 raw_features = A.(vars(1).name);
wolffd@0 15 indices = A.(vars(2).name);
wolffd@0 16 tst_inx = A.(vars(3).name);
wolffd@0 17 trn_inx = A.(vars(4).name);
wolffd@0 18 %
wolffd@0 19 figure(1); imagesc(raw_features);colorbar;
wolffd@0 20 title 'Original Features';
wolffd@0 21
wolffd@0 22 % load pregenerated RBM features
wolffd@0 23 mod = load('rbm_50');
wolffd@0 24
wolffd@0 25 % ---
wolffd@0 26 % uncomment the following line to use newly calculated RBM features
wolffd@0 27 % mod = new_rbm(50,'grad');
wolffd@0 28 % ---
wolffd@0 29
wolffd@0 30 features = logistic(raw_features*mod.W_max{1} + repmat(mod.hB_max{1},size(raw_features,1),1));
wolffd@0 31 figure(2); imagesc(features);colorbar;
wolffd@0 32 title 'RBM Features';
wolffd@0 33
wolffd@0 34 num_case = size(trn_inx,1);
wolffd@0 35 [trnd_12 trnd_13] = subspace_distances(trn_inx,features,indices,1,1);
wolffd@0 36 [tstd_12 tstd_13] = subspace_distances(tst_inx,features,indices,1,1);
wolffd@0 37 cr_ = 0; % correct rate for training
wolffd@0 38 cr = 0; % correct rate for testing
wolffd@0 39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%