adamstark@46: //=======================================================================
adamstark@46: /** @file BTrack.cpp
adamstark@47: * @brief BTrack - a real-time beat tracker
adamstark@46: * @author Adam Stark
adamstark@46: * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46: *
adamstark@46: * This program is free software: you can redistribute it and/or modify
adamstark@46: * it under the terms of the GNU General Public License as published by
adamstark@46: * the Free Software Foundation, either version 3 of the License, or
adamstark@46: * (at your option) any later version.
adamstark@46: *
adamstark@46: * This program is distributed in the hope that it will be useful,
adamstark@46: * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46: * GNU General Public License for more details.
adamstark@46: *
adamstark@46: * You should have received a copy of the GNU General Public License
adamstark@46: * along with this program. If not, see .
adamstark@46: */
adamstark@46: //=======================================================================
adamstark@46:
adamstark@46: #include
adamstark@52: #include
adamstark@97: #include
adamstark@46: #include "BTrack.h"
adamstark@46: #include "samplerate.h"
adamstark@89: #include
adamstark@46:
adamstark@55: //=======================================================================
adamstark@91: BTrack::BTrack()
adamstark@91: : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow)
adamstark@55: {
adamstark@108: initialise (512);
adamstark@55: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@108: BTrack::BTrack (int hop)
adamstark@108: : odf (hop, 2 * hop, ComplexSpectralDifferenceHWR, HanningWindow)
adamstark@111: {
adamstark@108: initialise (hop);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@108: BTrack::BTrack (int hop, int frame)
adamstark@108: : odf (hop, frame, ComplexSpectralDifferenceHWR, HanningWindow)
adamstark@55: {
adamstark@108: initialise (hop);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@88: BTrack::~BTrack()
adamstark@88: {
adamstark@93: #ifdef USE_FFTW
adamstark@88: // destroy fft plan
adamstark@91: fftw_destroy_plan (acfForwardFFT);
adamstark@91: fftw_destroy_plan (acfBackwardFFT);
adamstark@91: fftw_free (complexIn);
adamstark@91: fftw_free (complexOut);
adamstark@93: #endif
adamstark@93:
adamstark@93: #ifdef USE_KISS_FFT
adamstark@93: free (cfgForwards);
adamstark@93: free (cfgBackwards);
adamstark@93: delete [] fftIn;
adamstark@93: delete [] fftOut;
adamstark@93: #endif
adamstark@88: }
adamstark@88:
adamstark@88: //=======================================================================
adamstark@108: double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int samplingFrequency)
adamstark@55: {
adamstark@108: return ((static_cast (hopSize) / static_cast (samplingFrequency)) * static_cast (frameNumber));
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@108: void BTrack::initialise (int hop)
adamstark@55: {
adamstark@97: // set vector sizes
adamstark@97: resampledOnsetDF.resize (512);
adamstark@97: acf.resize (512);
adamstark@97: weightingVector.resize (128);
adamstark@97: combFilterBankOutput.resize (128);
adamstark@97: tempoObservationVector.resize (41);
adamstark@97: delta.resize (41);
adamstark@97: prevDelta.resize (41);
adamstark@97: prevDeltaFixed.resize (41);
adamstark@97:
adamstark@98: double rayleighParameter = 43;
adamstark@46:
adamstark@46: // initialise parameters
adamstark@46: tightness = 5;
adamstark@46: alpha = 0.9;
adamstark@58: estimatedTempo = 120.0;
adamstark@46:
adamstark@105: timeToNextPrediction = 10;
adamstark@105: timeToNextBeat = -1;
adamstark@46:
adamstark@57: beatDueInFrame = false;
adamstark@46:
adamstark@58:
adamstark@46: // create rayleigh weighting vector
adamstark@91: for (int n = 0; n < 128; n++)
adamstark@98: weightingVector[n] = ((double) n / pow (rayleighParameter, 2)) * exp((-1 * pow((double) - n, 2)) / (2 * pow (rayleighParameter, 2)));
adamstark@46:
adamstark@100: // initialise prevDelta
adamstark@97: std::fill (prevDelta.begin(), prevDelta.end(), 1);
adamstark@97:
adamstark@54: double t_mu = 41/2;
adamstark@54: double m_sig;
adamstark@54: double x;
adamstark@46: // create tempo transition matrix
adamstark@46: m_sig = 41/8;
adamstark@111:
adamstark@111: for (int i = 0; i < 41; i++)
adamstark@46: {
adamstark@111: for (int j = 0; j < 41; j++)
adamstark@46: {
adamstark@111: x = j + 1;
adamstark@111: t_mu = i + 1;
adamstark@111: tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt (2 * M_PI))) * exp((-1 * pow ((x - t_mu), 2)) / (2 * pow (m_sig, 2)) );
adamstark@46: }
adamstark@55: }
adamstark@46:
adamstark@46: // tempo is not fixed
adamstark@58: tempoFixed = false;
adamstark@58:
adamstark@55: // initialise algorithm given the hopsize
adamstark@108: setHopSize (hop);
adamstark@88:
adamstark@88: // Set up FFT for calculating the auto-correlation function
adamstark@88: FFTLengthForACFCalculation = 1024;
adamstark@88:
adamstark@93: #ifdef USE_FFTW
adamstark@91: complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@91: complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88:
adamstark@91: acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@91: acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@93: #endif
adamstark@93:
adamstark@93: #ifdef USE_KISS_FFT
adamstark@93: fftIn = new kiss_fft_cpx[FFTLengthForACFCalculation];
adamstark@93: fftOut = new kiss_fft_cpx[FFTLengthForACFCalculation];
adamstark@93: cfgForwards = kiss_fft_alloc (FFTLengthForACFCalculation, 0, 0, 0);
adamstark@93: cfgBackwards = kiss_fft_alloc (FFTLengthForACFCalculation, 1, 0, 0);
adamstark@93: #endif
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@108: void BTrack::setHopSize (int hop)
adamstark@46: {
adamstark@108: hopSize = hop;
adamstark@97: onsetDFBufferSize = (512 * 512) / hopSize; // calculate df buffer size
adamstark@115: beatPeriod = round (60 / ((((double) hopSize) / 44100) * 120.));
adamstark@63:
adamstark@63: // set size of onset detection function buffer
adamstark@91: onsetDF.resize (onsetDFBufferSize);
adamstark@63:
adamstark@63: // set size of cumulative score buffer
adamstark@91: cumulativeScore.resize (onsetDFBufferSize);
adamstark@46:
adamstark@46: // initialise df_buffer to zeros
adamstark@91: for (int i = 0; i < onsetDFBufferSize; i++)
adamstark@46: {
adamstark@58: onsetDF[i] = 0;
adamstark@58: cumulativeScore[i] = 0;
adamstark@46:
adamstark@57: if ((i % ((int) round(beatPeriod))) == 0)
adamstark@46: {
adamstark@58: onsetDF[i] = 1;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@108: void BTrack::updateHopAndFrameSize (int hop, int frame)
adamstark@65: {
adamstark@65: // update the onset detection function object
adamstark@108: odf.initialise (hop, frame);
adamstark@65:
adamstark@65: // update the hop size being used by the beat tracker
adamstark@108: setHopSize (hop);
adamstark@65: }
adamstark@65:
adamstark@65: //=======================================================================
adamstark@57: bool BTrack::beatDueInCurrentFrame()
adamstark@57: {
adamstark@57: return beatDueInFrame;
adamstark@57: }
adamstark@57:
adamstark@57: //=======================================================================
adamstark@78: double BTrack::getCurrentTempoEstimate()
adamstark@78: {
adamstark@78: return estimatedTempo;
adamstark@78: }
adamstark@78:
adamstark@78: //=======================================================================
adamstark@57: int BTrack::getHopSize()
adamstark@57: {
adamstark@57: return hopSize;
adamstark@57: }
adamstark@57:
adamstark@57: //=======================================================================
adamstark@58: double BTrack::getLatestCumulativeScoreValue()
adamstark@58: {
adamstark@105: return cumulativeScore[cumulativeScore.size() - 1];
adamstark@58: }
adamstark@58:
adamstark@58: //=======================================================================
adamstark@91: void BTrack::processAudioFrame (double* frame)
adamstark@55: {
adamstark@55: // calculate the onset detection function sample for the frame
adamstark@91: double sample = odf.calculateOnsetDetectionFunctionSample (frame);
adamstark@55:
adamstark@55: // process the new onset detection function sample in the beat tracking algorithm
adamstark@91: processOnsetDetectionFunctionSample (sample);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@91: void BTrack::processOnsetDetectionFunctionSample (double newSample)
adamstark@56: {
adamstark@56: // we need to ensure that the onset
adamstark@56: // detection function sample is positive
adamstark@91: newSample = fabs (newSample);
adamstark@56:
adamstark@56: // add a tiny constant to the sample to stop it from ever going
adamstark@56: // to zero. this is to avoid problems further down the line
adamstark@56: newSample = newSample + 0.0001;
adamstark@56:
adamstark@105: timeToNextPrediction--;
adamstark@105: timeToNextBeat--;
adamstark@57: beatDueInFrame = false;
adamstark@90:
adamstark@46: // add new sample at the end
adamstark@91: onsetDF.addSampleToEnd (newSample);
adamstark@46:
adamstark@46: // update cumulative score
adamstark@91: updateCumulativeScore (newSample);
adamstark@46:
adamstark@97: // if we are halfway between beats, predict a beat
adamstark@105: if (timeToNextPrediction == 0)
adamstark@97: predictBeat();
adamstark@46:
adamstark@46: // if we are at a beat
adamstark@105: if (timeToNextBeat == 0)
adamstark@46: {
adamstark@57: beatDueInFrame = true; // indicate a beat should be output
adamstark@46:
adamstark@46: // recalculate the tempo
adamstark@57: resampleOnsetDetectionFunction();
adamstark@57: calculateTempo();
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@91: void BTrack::setTempo (double tempo)
adamstark@97: {
adamstark@46: /////////// TEMPO INDICATION RESET //////////////////
adamstark@46:
adamstark@46: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46: while (tempo > 160)
adamstark@97: tempo = tempo / 2;
adamstark@46:
adamstark@46: while (tempo < 80)
adamstark@97: tempo = tempo * 2;
adamstark@46:
adamstark@46: // convert tempo from bpm value to integer index of tempo probability
adamstark@105: int tempoIndex = (int) round ((tempo - 80.) / 2);
adamstark@46:
adamstark@97: // now set previous tempo observations to zero and set desired tempo index to 1
adamstark@97: std::fill (prevDelta.begin(), prevDelta.end(), 0);
adamstark@105: prevDelta[tempoIndex] = 1;
adamstark@46:
adamstark@46: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46:
adamstark@46: // calculate new beat period
adamstark@97: int newBeatPeriod = (int) round (60 / ((((double) hopSize) / 44100) * tempo));
adamstark@46:
adamstark@97: int k = 1;
adamstark@97:
adamstark@97: // initialise onset detection function with delta functions spaced
adamstark@97: // at the new beat period
adamstark@97: for (int i = onsetDFBufferSize - 1; i >= 0; i--)
adamstark@46: {
adamstark@97: if (k == 1)
adamstark@46: {
adamstark@58: cumulativeScore[i] = 150;
adamstark@58: onsetDF[i] = 150;
adamstark@46: }
adamstark@46: else
adamstark@46: {
adamstark@58: cumulativeScore[i] = 10;
adamstark@58: onsetDF[i] = 10;
adamstark@46: }
adamstark@46:
adamstark@97: k++;
adamstark@46:
adamstark@97: if (k > newBeatPeriod)
adamstark@46: {
adamstark@97: k = 1;
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46:
adamstark@46: // beat is now
adamstark@105: timeToNextBeat = 0;
adamstark@46:
adamstark@105: // next prediction is on the offbeat, so half of new beat period away
adamstark@105: timeToNextPrediction = (int) round (((double) newBeatPeriod) / 2);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@91: void BTrack::fixTempo (double tempo)
adamstark@46: {
adamstark@46: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46: while (tempo > 160)
adamstark@100: tempo = tempo / 2;
adamstark@46:
adamstark@46: while (tempo < 80)
adamstark@100: tempo = tempo * 2;
adamstark@46:
adamstark@46: // convert tempo from bpm value to integer index of tempo probability
adamstark@100: int tempoIndex = (int) round((tempo - 80) / 2);
adamstark@46:
adamstark@46: // now set previous fixed previous tempo observation values to zero
adamstark@115: for (int i = 0; i < 41; i++)
adamstark@46: {
adamstark@58: prevDeltaFixed[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: // set desired tempo index to 1
adamstark@100: prevDeltaFixed[tempoIndex] = 1;
adamstark@46:
adamstark@46: // set the tempo fix flag
adamstark@58: tempoFixed = true;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::doNotFixTempo()
adamstark@46: {
adamstark@46: // set the tempo fix flag
adamstark@58: tempoFixed = false;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::resampleOnsetDetectionFunction()
adamstark@46: {
adamstark@46: float output[512];
adamstark@58: float input[onsetDFBufferSize];
adamstark@54:
adamstark@115: for (int i = 0; i < onsetDFBufferSize; i++)
adamstark@58: input[i] = (float) onsetDF[i];
adamstark@89:
adamstark@97: double ratio = 512.0 / ((double) onsetDFBufferSize);
adamstark@97: int bufferLength = onsetDFBufferSize;
adamstark@97: int outputLength = 512;
adamstark@89:
adamstark@97: SRC_DATA src_data;
adamstark@89: src_data.data_in = input;
adamstark@97: src_data.input_frames = bufferLength;
adamstark@97: src_data.src_ratio = ratio;
adamstark@89: src_data.data_out = output;
adamstark@97: src_data.output_frames = outputLength;
adamstark@89:
adamstark@89: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@89:
adamstark@97: for (int i = 0; i < outputLength; i++)
adamstark@89: resampledOnsetDF[i] = (double) src_data.data_out[i];
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateTempo()
adamstark@46: {
adamstark@105: double tempoToLagFactor = 60. * 44100. / 512.;
adamstark@105:
adamstark@46: // adaptive threshold on input
adamstark@100: adaptiveThreshold (resampledOnsetDF);
adamstark@46:
adamstark@46: // calculate auto-correlation function of detection function
adamstark@100: calculateBalancedACF (resampledOnsetDF);
adamstark@46:
adamstark@46: // calculate output of comb filterbank
adamstark@57: calculateOutputOfCombFilterBank();
adamstark@46:
adamstark@46: // adaptive threshold on rcf
adamstark@100: adaptiveThreshold (combFilterBankOutput);
adamstark@46:
adamstark@59: // calculate tempo observation vector from beat period observation vector
adamstark@100: for (int i = 0; i < 41; i++)
adamstark@46: {
adamstark@105: int tempoIndex1 = (int) round (tempoToLagFactor / ((double) ((2 * i) + 80)));
adamstark@105: int tempoIndex2 = (int) round (tempoToLagFactor / ((double) ((4 * i) + 160)));
adamstark@100: tempoObservationVector[i] = combFilterBankOutput[tempoIndex1 - 1] + combFilterBankOutput[tempoIndex2 - 1];
adamstark@46: }
adamstark@46:
adamstark@46: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@58: if (tempoFixed)
adamstark@46: {
adamstark@100: for (int k = 0; k < 41; k++)
adamstark@100: prevDelta[k] = prevDeltaFixed[k];
adamstark@46: }
adamstark@46:
adamstark@100: for (int j = 0; j < 41; j++)
adamstark@46: {
adamstark@100: double maxValue = -1;
adamstark@100:
adamstark@100: for (int i = 0; i < 41; i++)
adamstark@46: {
adamstark@100: double currentValue = prevDelta[i] * tempoTransitionMatrix[i][j];
adamstark@46:
adamstark@100: if (currentValue > maxValue)
adamstark@100: maxValue = currentValue;
adamstark@46: }
adamstark@46:
adamstark@100: delta[j] = maxValue * tempoObservationVector[j];
adamstark@46: }
adamstark@46:
adamstark@100: normaliseVector (delta);
adamstark@46:
adamstark@100: double maxIndex = -1;
adamstark@100: double maxValue = -1;
adamstark@46:
adamstark@100: for (int j = 0; j < 41; j++)
adamstark@46: {
adamstark@100: if (delta[j] > maxValue)
adamstark@46: {
adamstark@100: maxValue = delta[j];
adamstark@100: maxIndex = j;
adamstark@46: }
adamstark@46:
adamstark@58: prevDelta[j] = delta[j];
adamstark@46: }
adamstark@46:
adamstark@100: beatPeriod = round ((60.0 * 44100.0) / (((2 * maxIndex) + 80) * ((double) hopSize)));
adamstark@46:
adamstark@57: if (beatPeriod > 0)
adamstark@115: estimatedTempo = 60.0 / ((((double) hopSize) / 44100.0) * beatPeriod);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@100: void BTrack::adaptiveThreshold (std::vector& x)
adamstark@46: {
adamstark@100: int N = static_cast (x.size());
adamstark@100: double threshold[N];
adamstark@46:
adamstark@46: int p_post = 7;
adamstark@46: int p_pre = 8;
adamstark@46:
adamstark@100: int t = std::min (N, p_post); // what is smaller, p_post or df size. This is to avoid accessing outside of arrays
adamstark@46:
adamstark@46: // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@100: for (int i = 0; i <= t; i++)
adamstark@46: {
adamstark@100: int k = std::min ((i + p_pre), N);
adamstark@100: threshold[i] = calculateMeanOfVector (x, 1, k);
adamstark@46: }
adamstark@100:
adamstark@46: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@100: for (int i = t + 1; i < N - p_post; i++)
adamstark@46: {
adamstark@100: threshold[i] = calculateMeanOfVector (x, i - p_pre, i + p_post);
adamstark@46: }
adamstark@100:
adamstark@46: // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@100: for (int i = N - p_post; i < N; i++)
adamstark@46: {
adamstark@100: int k = std::max ((i - p_post), 1);
adamstark@100: threshold[i] = calculateMeanOfVector (x, k, N);
adamstark@46: }
adamstark@46:
adamstark@46: // subtract the threshold from the detection function and check that it is not less than 0
adamstark@100: for (int i = 0; i < N; i++)
adamstark@46: {
adamstark@100: x[i] = x[i] - threshold[i];
adamstark@100:
adamstark@46: if (x[i] < 0)
adamstark@100: x[i] = 0;
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateOutputOfCombFilterBank()
adamstark@46: {
adamstark@100: std::fill (combFilterBankOutput.begin(), combFilterBankOutput.end(), 0.0);
adamstark@100: int numCombElements = 4;
adamstark@46:
adamstark@91: for (int i = 2; i <= 127; i++) // max beat period
adamstark@46: {
adamstark@100: for (int a = 1; a <= numCombElements; a++) // number of comb elements
adamstark@46: {
adamstark@100: for (int b = 1 - a; b <= a - 1; b++) // general state using normalisation of comb elements
adamstark@46: {
adamstark@115: combFilterBankOutput[i - 1] += (acf[(a * i + b) - 1] * weightingVector[i - 1]) / (2 * a - 1); // calculate value for comb filter row
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@100: void BTrack::calculateBalancedACF (std::vector& onsetDetectionFunction)
adamstark@46: {
adamstark@88: int onsetDetectionFunctionLength = 512;
adamstark@88:
adamstark@93: #ifdef USE_FFTW
adamstark@88: // copy into complex array and zero pad
adamstark@111: for (int i = 0; i < FFTLengthForACFCalculation; i++)
adamstark@88: {
adamstark@88: if (i < onsetDetectionFunctionLength)
adamstark@88: {
adamstark@88: complexIn[i][0] = onsetDetectionFunction[i];
adamstark@88: complexIn[i][1] = 0.0;
adamstark@88: }
adamstark@88: else
adamstark@88: {
adamstark@88: complexIn[i][0] = 0.0;
adamstark@88: complexIn[i][1] = 0.0;
adamstark@88: }
adamstark@88: }
adamstark@88:
adamstark@88: // perform the fft
adamstark@91: fftw_execute (acfForwardFFT);
adamstark@88:
adamstark@88: // multiply by complex conjugate
adamstark@115: for (int i = 0; i < FFTLengthForACFCalculation; i++)
adamstark@88: {
adamstark@111: complexOut[i][0] = complexOut[i][0] * complexOut[i][0] + complexOut[i][1] * complexOut[i][1];
adamstark@88: complexOut[i][1] = 0.0;
adamstark@88: }
adamstark@88:
adamstark@88: // perform the ifft
adamstark@91: fftw_execute (acfBackwardFFT);
adamstark@88:
adamstark@93: #endif
adamstark@93:
adamstark@93: #ifdef USE_KISS_FFT
adamstark@93: // copy into complex array and zero pad
adamstark@111: for (int i = 0; i < FFTLengthForACFCalculation; i++)
adamstark@93: {
adamstark@93: if (i < onsetDetectionFunctionLength)
adamstark@93: {
adamstark@93: fftIn[i].r = onsetDetectionFunction[i];
adamstark@93: fftIn[i].i = 0.0;
adamstark@93: }
adamstark@93: else
adamstark@93: {
adamstark@93: fftIn[i].r = 0.0;
adamstark@93: fftIn[i].i = 0.0;
adamstark@93: }
adamstark@93: }
adamstark@93:
adamstark@93: // execute kiss fft
adamstark@93: kiss_fft (cfgForwards, fftIn, fftOut);
adamstark@93:
adamstark@93: // multiply by complex conjugate
adamstark@115: for (int i = 0; i < FFTLengthForACFCalculation; i++)
adamstark@93: {
adamstark@93: fftOut[i].r = fftOut[i].r * fftOut[i].r + fftOut[i].i * fftOut[i].i;
adamstark@93: fftOut[i].i = 0.0;
adamstark@93: }
adamstark@93:
adamstark@93: // perform the ifft
adamstark@93: kiss_fft (cfgBackwards, fftOut, fftIn);
adamstark@93:
adamstark@93: #endif
adamstark@88:
adamstark@88: double lag = 512;
adamstark@88:
adamstark@91: for (int i = 0; i < 512; i++)
adamstark@88: {
adamstark@93: #ifdef USE_FFTW
adamstark@88: // calculate absolute value of result
adamstark@111: double absValue = sqrt (complexIn[i][0] * complexIn[i][0] + complexIn[i][1] * complexIn[i][1]);
adamstark@93: #endif
adamstark@88:
adamstark@93: #ifdef USE_KISS_FFT
adamstark@93: // calculate absolute value of result
adamstark@93: double absValue = sqrt (fftIn[i].r * fftIn[i].r + fftIn[i].i * fftIn[i].i);
adamstark@93: #endif
adamstark@88: // divide by inverse lad to deal with scale bias towards small lags
adamstark@88: acf[i] = absValue / lag;
adamstark@88:
adamstark@88: // this division by 1024 is technically unnecessary but it ensures the algorithm produces
adamstark@88: // exactly the same ACF output as the old time domain implementation. The time difference is
adamstark@88: // minimal so I decided to keep it
adamstark@88: acf[i] = acf[i] / 1024.;
adamstark@88:
adamstark@88: lag = lag - 1.;
adamstark@88: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@100: double BTrack::calculateMeanOfVector (std::vector& vector, int startIndex, int endIndex)
adamstark@46: {
adamstark@97: int length = endIndex - startIndex;
adamstark@100: double sum = std::accumulate (vector.begin() + startIndex, vector.begin() + endIndex, 0.0);
adamstark@47:
adamstark@47: if (length > 0)
adamstark@97: return sum / static_cast (length); // average and return
adamstark@47: else
adamstark@47: return 0;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@100: void BTrack::normaliseVector (std::vector& vector)
adamstark@46: {
adamstark@100: double sum = std::accumulate (vector.begin(), vector.end(), 0.0);
adamstark@46:
adamstark@46: if (sum > 0)
adamstark@97: {
adamstark@100: for (int i = 0; i < vector.size(); i++)
adamstark@100: vector[i] = vector[i] / sum;
adamstark@97: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@100: void BTrack::updateCumulativeScore (double onsetDetectionFunctionSample)
adamstark@98: {
adamstark@100: int windowStart = onsetDFBufferSize - round (2. * beatPeriod);
adamstark@100: int windowEnd = onsetDFBufferSize - round (beatPeriod / 2.);
adamstark@100: int windowSize = windowEnd - windowStart + 1;
adamstark@46:
adamstark@104: // create log gaussian transition window
adamstark@103: double logGaussianTransitionWeighting[windowSize];
adamstark@103: createLogGaussianTransitionWeighting (logGaussianTransitionWeighting, windowSize, beatPeriod);
adamstark@46:
adamstark@104: // calculate the new cumulative score value
adamstark@105: double cumulativeScoreValue = calculateNewCumulativeScoreValue (cumulativeScore, logGaussianTransitionWeighting, windowStart, windowEnd, onsetDetectionFunctionSample, alpha);
adamstark@104:
adamstark@104: // add the new cumulative score value to the buffer
adamstark@105: cumulativeScore.addSampleToEnd (cumulativeScoreValue);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::predictBeat()
adamstark@46: {
adamstark@104: int beatExpectationWindowSize = static_cast (beatPeriod);
adamstark@102: double futureCumulativeScore[onsetDFBufferSize + beatExpectationWindowSize];
adamstark@102: double beatExpectationWindow[beatExpectationWindowSize];
adamstark@93:
adamstark@102: // copy cumulativeScore to first part of futureCumulativeScore
adamstark@115: for (int i = 0; i < onsetDFBufferSize; i++)
adamstark@102: futureCumulativeScore[i] = cumulativeScore[i];
adamstark@102:
adamstark@102: // Create a beat expectation window for predicting future beats from the "future" of the cumulative score.
adamstark@102: // We are making this beat prediction at the midpoint between beats, and so we make a Gaussian
adamstark@102: // weighting centred on the most likely beat position (half a beat period into the future)
adamstark@102: // This is W2 in Adam Stark's PhD thesis, equation 3.6, page 62
adamstark@102:
adamstark@102: double v = 1;
adamstark@102: for (int i = 0; i < beatExpectationWindowSize; i++)
adamstark@46: {
adamstark@102: beatExpectationWindow[i] = exp((-1 * pow ((v - (beatPeriod / 2)), 2)) / (2 * pow (beatPeriod / 2, 2)));
adamstark@46: v++;
adamstark@46: }
adamstark@46:
adamstark@102: // Create window for "synthesizing" the cumulative score into the future
adamstark@102: // It is a log-Gaussian transition weighting running from from 2 beat periods
adamstark@102: // in the past to half a beat period in the past. It favours the time exactly
adamstark@102: // one beat period in the past
adamstark@102:
adamstark@102: int startIndex = onsetDFBufferSize - round (2 * beatPeriod);
adamstark@102: int endIndex = onsetDFBufferSize - round (beatPeriod / 2);
adamstark@102: int pastWindowSize = endIndex - startIndex + 1;
adamstark@103:
adamstark@102: double logGaussianTransitionWeighting[pastWindowSize];
adamstark@103: createLogGaussianTransitionWeighting (logGaussianTransitionWeighting, pastWindowSize, beatPeriod);
adamstark@46:
adamstark@104: // Calculate the future cumulative score, by shifting the log Gaussian transition weighting from its
adamstark@106: // start position of [-2 beat periods, - 0.5 beat periods] forwards over the size of the beat
adamstark@104: // expectation window, calculating a new cumulative score where the onset detection function sample
adamstark@104: // is zero. This uses the "momentum" of the function to generate itself into the future.
adamstark@102: for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + beatExpectationWindowSize); i++)
adamstark@46: {
adamstark@106: // note here that we pass 0.0 in for the onset detection function sample and 1.0 for the alpha weighting factor
adamstark@104: // see equation 3.4 and page 60 - 62 of Adam Stark's PhD thesis for details
adamstark@104: futureCumulativeScore[i] = calculateNewCumulativeScoreValue (futureCumulativeScore, logGaussianTransitionWeighting, startIndex, endIndex, 0.0, 1.0);
adamstark@104:
adamstark@104: startIndex++;
adamstark@104: endIndex++;
adamstark@46: }
adamstark@46:
adamstark@102: // Predict the next beat, finding the maximum point of the future cumulative score
adamstark@102: // over the next beat, after being weighted by the beat expectation window
adamstark@102:
adamstark@102: double maxValue = 0;
adamstark@102: int n = 0;
adamstark@46:
adamstark@102: for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + beatExpectationWindowSize); i++)
adamstark@46: {
adamstark@102: double weightedCumulativeScore = futureCumulativeScore[i] * beatExpectationWindow[n];
adamstark@46:
adamstark@102: if (weightedCumulativeScore > maxValue)
adamstark@46: {
adamstark@102: maxValue = weightedCumulativeScore;
adamstark@105: timeToNextBeat = n;
adamstark@46: }
adamstark@46:
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@105: // set next prediction time as on the offbeat after the next beat
adamstark@105: timeToNextPrediction = timeToNextBeat + round (beatPeriod / 2);
adamstark@97: }
adamstark@103:
adamstark@103: //=======================================================================
adamstark@103: void BTrack::createLogGaussianTransitionWeighting (double* weightingArray, int numSamples, double beatPeriod)
adamstark@103: {
adamstark@105: // (This is W1 in Adam Stark's PhD thesis, equation 3.2, page 60)
adamstark@105:
adamstark@103: double v = -2. * beatPeriod;
adamstark@103:
adamstark@103: for (int i = 0; i < numSamples; i++)
adamstark@103: {
adamstark@103: double a = tightness * log (-v / beatPeriod);
adamstark@103: weightingArray[i] = exp ((-1. * a * a) / 2.);
adamstark@103: v++;
adamstark@103: }
adamstark@103: }
adamstark@104:
adamstark@104: //=======================================================================
adamstark@104: template
adamstark@104: double BTrack::calculateNewCumulativeScoreValue (T cumulativeScoreArray, double* logGaussianTransitionWeighting, int startIndex, int endIndex, double onsetDetectionFunctionSample, double alphaWeightingFactor)
adamstark@104: {
adamstark@104: // calculate new cumulative score value by weighting the cumulative score between
adamstark@104: // startIndex and endIndex and finding the maximum value
adamstark@104: double maxValue = 0;
adamstark@104: int n = 0;
adamstark@104: for (int i = startIndex; i <= endIndex; i++)
adamstark@104: {
adamstark@104: double weightedCumulativeScore = cumulativeScoreArray[i] * logGaussianTransitionWeighting[n];
adamstark@104:
adamstark@104: if (weightedCumulativeScore > maxValue)
adamstark@104: maxValue = weightedCumulativeScore;
adamstark@104:
adamstark@104: n++;
adamstark@104: }
adamstark@104:
adamstark@104: // now mix with the incoming onset detection function sample
adamstark@104: // (equation 3.4 on page 60 of Adam Stark's PhD thesis)
adamstark@104: double cumulativeScoreValue = ((1. - alphaWeightingFactor) * onsetDetectionFunctionSample) + (alphaWeightingFactor * maxValue);
adamstark@104:
adamstark@104: return cumulativeScoreValue;
adamstark@104: }