adamstark@5: //======================================================================= adamstark@5: /** @file BTrack.cpp adamstark@6: * @brief BTrack - a real-time beat tracker adamstark@5: * @author Adam Stark adamstark@5: * @copyright Copyright (C) 2008-2014 Queen Mary University of London adamstark@5: * adamstark@5: * This program is free software: you can redistribute it and/or modify adamstark@5: * it under the terms of the GNU General Public License as published by adamstark@5: * the Free Software Foundation, either version 3 of the License, or adamstark@5: * (at your option) any later version. adamstark@5: * adamstark@5: * This program is distributed in the hope that it will be useful, adamstark@5: * but WITHOUT ANY WARRANTY; without even the implied warranty of adamstark@5: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the adamstark@5: * GNU General Public License for more details. adamstark@5: * adamstark@5: * You should have received a copy of the GNU General Public License adamstark@5: * along with this program. If not, see . adamstark@5: */ adamstark@5: //======================================================================= adamstark@5: adamstark@5: #include adamstark@15: #include adamstark@5: #include "BTrack.h" adamstark@5: #include "samplerate.h" adamstark@5: adamstark@18: //======================================================================= adamstark@20: BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) adamstark@18: { adamstark@18: initialise(512, 1024); adamstark@18: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) adamstark@5: { adamstark@20: initialise(hopSize_, 2*hopSize_); adamstark@18: } adamstark@18: adamstark@18: //======================================================================= adamstark@20: BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) adamstark@18: { adamstark@20: initialise(hopSize_, frameSize_); adamstark@18: } adamstark@18: adamstark@18: //======================================================================= adamstark@18: double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) adamstark@18: { adamstark@18: double hop = (double) hopSize; adamstark@18: double samplingFrequency = (double) fs; adamstark@18: double frameNum = (double) frameNumber; adamstark@18: adamstark@18: return ((hop / samplingFrequency) * frameNum); adamstark@18: } adamstark@18: adamstark@18: //======================================================================= adamstark@18: double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) adamstark@18: { adamstark@18: long frameNum = (long) frameNumber; adamstark@18: adamstark@18: return getBeatTimeInSeconds(frameNum, hopSize, fs); adamstark@18: } adamstark@18: adamstark@18: adamstark@18: adamstark@18: //======================================================================= adamstark@20: void BTrack::initialise(int hopSize_, int frameSize_) adamstark@18: { adamstark@18: double rayparam = 43; adamstark@17: double pi = 3.14159265; adamstark@5: adamstark@5: adamstark@5: // initialise parameters adamstark@5: tightness = 5; adamstark@5: alpha = 0.9; adamstark@5: tempo = 120; adamstark@5: est_tempo = 120; adamstark@5: p_fact = 60.*44100./512.; adamstark@5: adamstark@5: m0 = 10; adamstark@5: beat = -1; adamstark@5: adamstark@20: beatDueInFrame = false; adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: // create rayleigh weighting vector adamstark@5: for (int n = 0;n < 128;n++) adamstark@5: { adamstark@17: wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); adamstark@5: } adamstark@5: adamstark@5: // initialise prev_delta adamstark@5: for (int i = 0;i < 41;i++) adamstark@5: { adamstark@5: prev_delta[i] = 1; adamstark@5: } adamstark@5: adamstark@17: double t_mu = 41/2; adamstark@17: double m_sig; adamstark@17: double x; adamstark@5: // create tempo transition matrix adamstark@5: m_sig = 41/8; adamstark@5: for (int i = 0;i < 41;i++) adamstark@5: { adamstark@5: for (int j = 0;j < 41;j++) adamstark@5: { adamstark@5: x = j+1; adamstark@5: t_mu = i+1; adamstark@5: t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); adamstark@5: } adamstark@18: } adamstark@5: adamstark@5: // tempo is not fixed adamstark@5: tempofix = 0; adamstark@18: adamstark@18: // initialise algorithm given the hopsize adamstark@20: setHopSize(hopSize_); adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::setHopSize(int hopSize_) adamstark@5: { adamstark@20: hopSize = hopSize_; adamstark@18: dfbuffer_size = (512*512)/hopSize; // calculate df buffer size adamstark@5: adamstark@20: beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); adamstark@5: adamstark@17: dfbuffer = new double[dfbuffer_size]; // create df_buffer adamstark@17: cumscore = new double[dfbuffer_size]; // create cumscore adamstark@5: adamstark@5: adamstark@5: // initialise df_buffer to zeros adamstark@5: for (int i = 0;i < dfbuffer_size;i++) adamstark@5: { adamstark@5: dfbuffer[i] = 0; adamstark@5: cumscore[i] = 0; adamstark@5: adamstark@5: adamstark@20: if ((i % ((int) round(beatPeriod))) == 0) adamstark@5: { adamstark@5: dfbuffer[i] = 1; adamstark@5: } adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: bool BTrack::beatDueInCurrentFrame() adamstark@20: { adamstark@20: return beatDueInFrame; adamstark@20: } adamstark@20: adamstark@20: //======================================================================= adamstark@20: int BTrack::getHopSize() adamstark@20: { adamstark@20: return hopSize; adamstark@20: } adamstark@20: adamstark@20: //======================================================================= adamstark@18: void BTrack::processAudioFrame(double *frame) adamstark@18: { adamstark@18: // calculate the onset detection function sample for the frame adamstark@18: double sample = odf.getDFsample(frame); adamstark@18: adamstark@19: adamstark@18: adamstark@18: // process the new onset detection function sample in the beat tracking algorithm adamstark@18: processOnsetDetectionFunctionSample(sample); adamstark@18: } adamstark@18: adamstark@18: //======================================================================= adamstark@18: void BTrack::processOnsetDetectionFunctionSample(double newSample) adamstark@19: { adamstark@19: // we need to ensure that the onset adamstark@19: // detection function sample is positive adamstark@19: newSample = fabs(newSample); adamstark@19: adamstark@19: // add a tiny constant to the sample to stop it from ever going adamstark@19: // to zero. this is to avoid problems further down the line adamstark@19: newSample = newSample + 0.0001; adamstark@19: adamstark@5: m0--; adamstark@5: beat--; adamstark@20: beatDueInFrame = false; adamstark@5: adamstark@5: // move all samples back one step adamstark@5: for (int i=0;i < (dfbuffer_size-1);i++) adamstark@5: { adamstark@5: dfbuffer[i] = dfbuffer[i+1]; adamstark@5: } adamstark@5: adamstark@5: // add new sample at the end adamstark@18: dfbuffer[dfbuffer_size-1] = newSample; adamstark@5: adamstark@5: // update cumulative score adamstark@20: updateCumulativeScore(newSample); adamstark@5: adamstark@5: // if we are halfway between beats adamstark@5: if (m0 == 0) adamstark@5: { adamstark@20: predictBeat(); adamstark@5: } adamstark@5: adamstark@5: // if we are at a beat adamstark@5: if (beat == 0) adamstark@5: { adamstark@20: beatDueInFrame = true; // indicate a beat should be output adamstark@5: adamstark@5: // recalculate the tempo adamstark@20: resampleOnsetDetectionFunction(); adamstark@20: calculateTempo(); adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::setTempo(double tempo) adamstark@5: { adamstark@5: adamstark@5: /////////// TEMPO INDICATION RESET ////////////////// adamstark@5: adamstark@5: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@5: while (tempo > 160) adamstark@5: { adamstark@5: tempo = tempo/2; adamstark@5: } adamstark@5: adamstark@5: while (tempo < 80) adamstark@5: { adamstark@5: tempo = tempo * 2; adamstark@5: } adamstark@5: adamstark@5: // convert tempo from bpm value to integer index of tempo probability adamstark@5: int tempo_index = (int) round((tempo - 80)/2); adamstark@5: adamstark@5: // now set previous tempo observations to zero adamstark@5: for (int i=0;i < 41;i++) adamstark@5: { adamstark@5: prev_delta[i] = 0; adamstark@5: } adamstark@5: adamstark@5: // set desired tempo index to 1 adamstark@5: prev_delta[tempo_index] = 1; adamstark@5: adamstark@5: adamstark@5: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// adamstark@5: adamstark@5: // calculate new beat period adamstark@20: int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo)); adamstark@5: adamstark@5: int bcounter = 1; adamstark@5: // initialise df_buffer to zeros adamstark@5: for (int i = (dfbuffer_size-1);i >= 0;i--) adamstark@5: { adamstark@5: if (bcounter == 1) adamstark@5: { adamstark@5: cumscore[i] = 150; adamstark@5: dfbuffer[i] = 150; adamstark@5: } adamstark@5: else adamstark@5: { adamstark@5: cumscore[i] = 10; adamstark@5: dfbuffer[i] = 10; adamstark@5: } adamstark@5: adamstark@5: bcounter++; adamstark@5: adamstark@5: if (bcounter > new_bperiod) adamstark@5: { adamstark@5: bcounter = 1; adamstark@5: } adamstark@5: } adamstark@5: adamstark@5: /////////// INDICATE THAT THIS IS A BEAT ////////////////// adamstark@5: adamstark@5: // beat is now adamstark@5: beat = 0; adamstark@5: adamstark@5: // offbeat is half of new beat period away adamstark@17: m0 = (int) round(((double) new_bperiod)/2); adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::fixTempo(double tempo) adamstark@5: { adamstark@5: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@5: while (tempo > 160) adamstark@5: { adamstark@5: tempo = tempo/2; adamstark@5: } adamstark@5: adamstark@5: while (tempo < 80) adamstark@5: { adamstark@5: tempo = tempo * 2; adamstark@5: } adamstark@5: adamstark@5: // convert tempo from bpm value to integer index of tempo probability adamstark@5: int tempo_index = (int) round((tempo - 80)/2); adamstark@5: adamstark@5: // now set previous fixed previous tempo observation values to zero adamstark@5: for (int i=0;i < 41;i++) adamstark@5: { adamstark@5: prev_delta_fix[i] = 0; adamstark@5: } adamstark@5: adamstark@5: // set desired tempo index to 1 adamstark@5: prev_delta_fix[tempo_index] = 1; adamstark@5: adamstark@5: // set the tempo fix flag adamstark@5: tempofix = 1; adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::doNotFixTempo() adamstark@5: { adamstark@5: // set the tempo fix flag adamstark@5: tempofix = 0; adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::resampleOnsetDetectionFunction() adamstark@5: { adamstark@5: float output[512]; adamstark@17: float input[dfbuffer_size]; adamstark@17: adamstark@17: for (int i = 0;i < dfbuffer_size;i++) adamstark@17: { adamstark@17: input[i] = (float) dfbuffer[i]; adamstark@17: } adamstark@5: adamstark@5: double src_ratio = 512.0/((double) dfbuffer_size); adamstark@5: int BUFFER_LEN = dfbuffer_size; adamstark@5: int output_len; adamstark@5: SRC_DATA src_data ; adamstark@5: adamstark@5: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; adamstark@5: output_len = 512; adamstark@5: adamstark@17: src_data.data_in = input; adamstark@5: src_data.input_frames = BUFFER_LEN; adamstark@5: adamstark@5: src_data.src_ratio = src_ratio; adamstark@5: adamstark@5: src_data.data_out = output; adamstark@5: src_data.output_frames = output_len; adamstark@5: adamstark@5: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); adamstark@5: adamstark@5: for (int i = 0;i < output_len;i++) adamstark@5: { adamstark@17: df512[i] = (double) src_data.data_out[i]; adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::calculateTempo() adamstark@5: { adamstark@5: // adaptive threshold on input adamstark@20: adaptiveThreshold(df512,512); adamstark@5: adamstark@5: // calculate auto-correlation function of detection function adamstark@20: calculateBalancedACF(df512); adamstark@5: adamstark@5: // calculate output of comb filterbank adamstark@20: calculateOutputOfCombFilterBank(); adamstark@5: adamstark@5: adamstark@5: // adaptive threshold on rcf adamstark@20: adaptiveThreshold(rcf,128); adamstark@5: adamstark@5: adamstark@5: int t_index; adamstark@5: int t_index2; adamstark@5: // calculate tempo observation vector from bperiod observation vector adamstark@5: for (int i = 0;i < 41;i++) adamstark@5: { adamstark@17: t_index = (int) round(p_fact / ((double) ((2*i)+80))); adamstark@17: t_index2 = (int) round(p_fact / ((double) ((4*i)+160))); adamstark@5: adamstark@5: adamstark@5: t_obs[i] = rcf[t_index-1] + rcf[t_index2-1]; adamstark@5: } adamstark@5: adamstark@5: adamstark@17: double maxval; adamstark@17: double maxind; adamstark@17: double curval; adamstark@5: adamstark@5: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function adamstark@5: if (tempofix == 1) adamstark@5: { adamstark@5: for (int k = 0;k < 41;k++) adamstark@5: { adamstark@5: prev_delta[k] = prev_delta_fix[k]; adamstark@5: } adamstark@5: } adamstark@5: adamstark@5: for (int j=0;j < 41;j++) adamstark@5: { adamstark@5: maxval = -1; adamstark@5: for (int i = 0;i < 41;i++) adamstark@5: { adamstark@5: curval = prev_delta[i]*t_tmat[i][j]; adamstark@5: adamstark@5: if (curval > maxval) adamstark@5: { adamstark@5: maxval = curval; adamstark@5: } adamstark@5: } adamstark@5: adamstark@5: delta[j] = maxval*t_obs[j]; adamstark@5: } adamstark@5: adamstark@5: adamstark@20: normaliseArray(delta,41); adamstark@5: adamstark@5: maxind = -1; adamstark@5: maxval = -1; adamstark@5: adamstark@5: for (int j=0;j < 41;j++) adamstark@5: { adamstark@5: if (delta[j] > maxval) adamstark@5: { adamstark@5: maxval = delta[j]; adamstark@5: maxind = j; adamstark@5: } adamstark@5: adamstark@5: prev_delta[j] = delta[j]; adamstark@5: } adamstark@5: adamstark@20: beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); adamstark@5: adamstark@20: if (beatPeriod > 0) adamstark@5: { adamstark@20: est_tempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::adaptiveThreshold(double *x,int N) adamstark@5: { adamstark@5: //int N = 512; // length of df adamstark@5: int i = 0; adamstark@5: int k,t = 0; adamstark@17: double x_thresh[N]; adamstark@5: adamstark@5: int p_post = 7; adamstark@5: int p_pre = 8; adamstark@5: adamstark@15: t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays adamstark@5: adamstark@5: // find threshold for first 't' samples, where a full average cannot be computed yet adamstark@5: for (i = 0;i <= t;i++) adamstark@5: { adamstark@15: k = std::min((i+p_pre),N); adamstark@20: x_thresh[i] = calculateMeanOfArray(x,1,k); adamstark@5: } adamstark@5: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] adamstark@5: for (i = t+1;i < N-p_post;i++) adamstark@5: { adamstark@20: x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); adamstark@5: } adamstark@5: // for last few samples calculate threshold, again, not enough samples to do as above adamstark@5: for (i = N-p_post;i < N;i++) adamstark@5: { adamstark@15: k = std::max((i-p_post),1); adamstark@20: x_thresh[i] = calculateMeanOfArray(x,k,N); adamstark@5: } adamstark@5: adamstark@5: // subtract the threshold from the detection function and check that it is not less than 0 adamstark@5: for (i = 0;i < N;i++) adamstark@5: { adamstark@5: x[i] = x[i] - x_thresh[i]; adamstark@5: if (x[i] < 0) adamstark@5: { adamstark@5: x[i] = 0; adamstark@5: } adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::calculateOutputOfCombFilterBank() adamstark@5: { adamstark@5: int numelem; adamstark@5: adamstark@5: for (int i = 0;i < 128;i++) adamstark@5: { adamstark@5: rcf[i] = 0; adamstark@5: } adamstark@5: adamstark@5: numelem = 4; adamstark@5: adamstark@5: for (int i = 2;i <= 127;i++) // max beat period adamstark@5: { adamstark@5: for (int a = 1;a <= numelem;a++) // number of comb elements adamstark@5: { adamstark@5: for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements adamstark@5: { adamstark@5: rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row adamstark@5: } adamstark@5: } adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::calculateBalancedACF(double *df_thresh) adamstark@5: { adamstark@5: int l, n = 0; adamstark@17: double sum, tmp; adamstark@5: adamstark@5: // for l lags from 0-511 adamstark@5: for (l = 0;l < 512;l++) adamstark@5: { adamstark@5: sum = 0; adamstark@5: adamstark@5: // for n samples from 0 - (512-lag) adamstark@5: for (n = 0;n < (512-l);n++) adamstark@5: { adamstark@5: tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l) adamstark@5: sum = sum + tmp; // add to sum adamstark@5: } adamstark@5: adamstark@5: acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: double BTrack::calculateMeanOfArray(double *array,int start,int end) adamstark@5: { adamstark@5: int i; adamstark@6: double sum = 0; adamstark@6: adamstark@6: int length = end - start; adamstark@5: adamstark@5: // find sum adamstark@6: for (i = start;i < end;i++) adamstark@5: { adamstark@5: sum = sum + array[i]; adamstark@5: } adamstark@5: adamstark@6: if (length > 0) adamstark@6: { adamstark@6: return sum / length; // average and return adamstark@6: } adamstark@6: else adamstark@6: { adamstark@6: return 0; adamstark@6: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::normaliseArray(double *array,int N) adamstark@5: { adamstark@5: double sum = 0; adamstark@5: adamstark@5: for (int i = 0;i < N;i++) adamstark@5: { adamstark@5: if (array[i] > 0) adamstark@5: { adamstark@5: sum = sum + array[i]; adamstark@5: } adamstark@5: } adamstark@5: adamstark@5: if (sum > 0) adamstark@5: { adamstark@5: for (int i = 0;i < N;i++) adamstark@5: { adamstark@5: array[i] = array[i] / sum; adamstark@5: } adamstark@5: } adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::updateCumulativeScore(double df_sample) adamstark@5: { adamstark@5: int start, end, winsize; adamstark@17: double max; adamstark@5: adamstark@20: start = dfbuffer_size - round(2*beatPeriod); adamstark@20: end = dfbuffer_size - round(beatPeriod/2); adamstark@5: winsize = end-start+1; adamstark@5: adamstark@17: double w1[winsize]; adamstark@20: double v = -2*beatPeriod; adamstark@17: double wcumscore; adamstark@5: adamstark@5: adamstark@5: // create window adamstark@5: for (int i = 0;i < winsize;i++) adamstark@5: { adamstark@20: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); adamstark@5: v = v+1; adamstark@5: } adamstark@5: adamstark@5: // calculate new cumulative score value adamstark@5: max = 0; adamstark@5: int n = 0; adamstark@5: for (int i=start;i <= end;i++) adamstark@5: { adamstark@5: wcumscore = cumscore[i]*w1[n]; adamstark@5: adamstark@5: if (wcumscore > max) adamstark@5: { adamstark@5: max = wcumscore; adamstark@5: } adamstark@5: n++; adamstark@5: } adamstark@5: adamstark@5: adamstark@5: // shift cumulative score back one adamstark@5: for (int i = 0;i < (dfbuffer_size-1);i++) adamstark@5: { adamstark@5: cumscore[i] = cumscore[i+1]; adamstark@5: } adamstark@5: adamstark@5: // add new value to cumulative score adamstark@5: cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max); adamstark@5: adamstark@5: cscoreval = cumscore[dfbuffer_size-1]; adamstark@5: adamstark@5: //cout << cumscore[dfbuffer_size-1] << endl; adamstark@5: adamstark@5: } adamstark@5: adamstark@14: //======================================================================= adamstark@20: void BTrack::predictBeat() adamstark@5: { adamstark@20: int winsize = (int) beatPeriod; adamstark@17: double fcumscore[dfbuffer_size + winsize]; adamstark@17: double w2[winsize]; adamstark@5: // copy cumscore to first part of fcumscore adamstark@5: for (int i = 0;i < dfbuffer_size;i++) adamstark@5: { adamstark@5: fcumscore[i] = cumscore[i]; adamstark@5: } adamstark@5: adamstark@5: // create future window adamstark@17: double v = 1; adamstark@5: for (int i = 0;i < winsize;i++) adamstark@5: { adamstark@20: w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); adamstark@5: v++; adamstark@5: } adamstark@5: adamstark@5: // create past window adamstark@20: v = -2*beatPeriod; adamstark@20: int start = dfbuffer_size - round(2*beatPeriod); adamstark@20: int end = dfbuffer_size - round(beatPeriod/2); adamstark@5: int pastwinsize = end-start+1; adamstark@17: double w1[pastwinsize]; adamstark@5: adamstark@5: for (int i = 0;i < pastwinsize;i++) adamstark@5: { adamstark@20: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); adamstark@5: v = v+1; adamstark@5: } adamstark@5: adamstark@5: adamstark@5: adamstark@5: // calculate future cumulative score adamstark@17: double max; adamstark@5: int n; adamstark@17: double wcumscore; adamstark@5: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) adamstark@5: { adamstark@20: start = i - round(2*beatPeriod); adamstark@20: end = i - round(beatPeriod/2); adamstark@5: adamstark@5: max = 0; adamstark@5: n = 0; adamstark@5: for (int k=start;k <= end;k++) adamstark@5: { adamstark@5: wcumscore = fcumscore[k]*w1[n]; adamstark@5: adamstark@5: if (wcumscore > max) adamstark@5: { adamstark@5: max = wcumscore; adamstark@5: } adamstark@5: n++; adamstark@5: } adamstark@5: adamstark@5: fcumscore[i] = max; adamstark@5: } adamstark@5: adamstark@5: adamstark@5: // predict beat adamstark@5: max = 0; adamstark@5: n = 0; adamstark@5: adamstark@5: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) adamstark@5: { adamstark@5: wcumscore = fcumscore[i]*w2[n]; adamstark@5: adamstark@5: if (wcumscore > max) adamstark@5: { adamstark@5: max = wcumscore; adamstark@5: beat = n; adamstark@5: } adamstark@5: adamstark@5: n++; adamstark@5: } adamstark@5: adamstark@5: // set next prediction time adamstark@20: m0 = beat+round(beatPeriod/2); adamstark@5: adamstark@5: adamstark@5: }