adamstark@38: //======================================================================= adamstark@38: /** @file BTrack.cpp adamstark@38: * @brief BTrack - a real-time beat tracker adamstark@38: * @author Adam Stark adamstark@38: * @copyright Copyright (C) 2008-2014 Queen Mary University of London adamstark@38: * adamstark@38: * This program is free software: you can redistribute it and/or modify adamstark@38: * it under the terms of the GNU General Public License as published by adamstark@38: * the Free Software Foundation, either version 3 of the License, or adamstark@38: * (at your option) any later version. adamstark@38: * adamstark@38: * This program is distributed in the hope that it will be useful, adamstark@38: * but WITHOUT ANY WARRANTY; without even the implied warranty of adamstark@38: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the adamstark@38: * GNU General Public License for more details. adamstark@38: * adamstark@38: * You should have received a copy of the GNU General Public License adamstark@38: * along with this program. If not, see . adamstark@38: */ adamstark@38: //======================================================================= adamstark@38: adamstark@38: #include adamstark@38: #include adamstark@38: #include "BTrack.h" adamstark@38: #include "samplerate.h" adamstark@38: using namespace std; adamstark@38: adamstark@38: adamstark@38: adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // Constructor adamstark@38: BTrack :: BTrack() adamstark@38: { adamstark@38: float rayparam = 43; adamstark@38: float pi = 3.14159265; adamstark@38: adamstark@38: adamstark@38: // initialise parameters adamstark@38: tightness = 5; adamstark@38: alpha = 0.9; adamstark@38: tempo = 120; adamstark@38: est_tempo = 120; adamstark@38: p_fact = 60.*44100./512.; adamstark@38: adamstark@38: m0 = 10; adamstark@38: beat = -1; adamstark@38: adamstark@38: playbeat = 0; adamstark@38: adamstark@38: adamstark@38: adamstark@38: adamstark@38: // create rayleigh weighting vector adamstark@38: for (int n = 0;n < 128;n++) adamstark@38: { adamstark@38: wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2))); adamstark@38: } adamstark@38: adamstark@38: // initialise prev_delta adamstark@38: for (int i = 0;i < 41;i++) adamstark@38: { adamstark@38: prev_delta[i] = 1; adamstark@38: } adamstark@38: adamstark@38: float t_mu = 41/2; adamstark@38: float m_sig; adamstark@38: float x; adamstark@38: // create tempo transition matrix adamstark@38: m_sig = 41/8; adamstark@38: for (int i = 0;i < 41;i++) adamstark@38: { adamstark@38: for (int j = 0;j < 41;j++) adamstark@38: { adamstark@38: x = j+1; adamstark@38: t_mu = i+1; adamstark@38: t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: // tempo is not fixed adamstark@38: tempofix = 0; adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // Destructor adamstark@38: BTrack :: ~BTrack() adamstark@38: { adamstark@38: adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // Initialise with frame size and set all frame sizes accordingly adamstark@38: void BTrack :: initialise(int fsize) adamstark@38: { adamstark@38: framesize = fsize; adamstark@38: dfbuffer_size = (512*512)/fsize; // calculate df buffer size adamstark@38: adamstark@38: bperiod = round(60/((((float) fsize)/44100)*tempo)); adamstark@38: adamstark@38: dfbuffer = new float[dfbuffer_size]; // create df_buffer adamstark@38: cumscore = new float[dfbuffer_size]; // create cumscore adamstark@38: adamstark@38: adamstark@38: // initialise df_buffer to zeros adamstark@38: for (int i = 0;i < dfbuffer_size;i++) adamstark@38: { adamstark@38: dfbuffer[i] = 0; adamstark@38: cumscore[i] = 0; adamstark@38: adamstark@38: adamstark@38: if ((i % ((int) round(bperiod))) == 0) adamstark@38: { adamstark@38: dfbuffer[i] = 1; adamstark@38: } adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // Add new sample to buffer and apply beat tracking adamstark@38: void BTrack :: process(float df_sample) adamstark@38: { adamstark@38: m0--; adamstark@38: beat--; adamstark@38: playbeat = 0; adamstark@38: adamstark@38: // move all samples back one step adamstark@38: for (int i=0;i < (dfbuffer_size-1);i++) adamstark@38: { adamstark@38: dfbuffer[i] = dfbuffer[i+1]; adamstark@38: } adamstark@38: adamstark@38: // add new sample at the end adamstark@38: dfbuffer[dfbuffer_size-1] = df_sample; adamstark@38: adamstark@38: // update cumulative score adamstark@38: updatecumscore(df_sample); adamstark@38: adamstark@38: // if we are halfway between beats adamstark@38: if (m0 == 0) adamstark@38: { adamstark@38: predictbeat(); adamstark@38: } adamstark@38: adamstark@38: // if we are at a beat adamstark@38: if (beat == 0) adamstark@38: { adamstark@38: playbeat = 1; // indicate a beat should be output adamstark@38: adamstark@38: // recalculate the tempo adamstark@38: dfconvert(); adamstark@38: calcTempo(); adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // Set the tempo of the beat tracker adamstark@38: void BTrack :: settempo(float tempo) adamstark@38: { adamstark@38: adamstark@38: /////////// TEMPO INDICATION RESET ////////////////// adamstark@38: adamstark@38: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@38: while (tempo > 160) adamstark@38: { adamstark@38: tempo = tempo/2; adamstark@38: } adamstark@38: adamstark@38: while (tempo < 80) adamstark@38: { adamstark@38: tempo = tempo * 2; adamstark@38: } adamstark@38: adamstark@38: // convert tempo from bpm value to integer index of tempo probability adamstark@38: int tempo_index = (int) round((tempo - 80)/2); adamstark@38: adamstark@38: // now set previous tempo observations to zero adamstark@38: for (int i=0;i < 41;i++) adamstark@38: { adamstark@38: prev_delta[i] = 0; adamstark@38: } adamstark@38: adamstark@38: // set desired tempo index to 1 adamstark@38: prev_delta[tempo_index] = 1; adamstark@38: adamstark@38: adamstark@38: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// adamstark@38: adamstark@38: // calculate new beat period adamstark@38: int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo)); adamstark@38: adamstark@38: int bcounter = 1; adamstark@38: // initialise df_buffer to zeros adamstark@38: for (int i = (dfbuffer_size-1);i >= 0;i--) adamstark@38: { adamstark@38: if (bcounter == 1) adamstark@38: { adamstark@38: cumscore[i] = 150; adamstark@38: dfbuffer[i] = 150; adamstark@38: } adamstark@38: else adamstark@38: { adamstark@38: cumscore[i] = 10; adamstark@38: dfbuffer[i] = 10; adamstark@38: } adamstark@38: adamstark@38: bcounter++; adamstark@38: adamstark@38: if (bcounter > new_bperiod) adamstark@38: { adamstark@38: bcounter = 1; adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: /////////// INDICATE THAT THIS IS A BEAT ////////////////// adamstark@38: adamstark@38: // beat is now adamstark@38: beat = 0; adamstark@38: adamstark@38: // offbeat is half of new beat period away adamstark@38: m0 = (int) round(((float) new_bperiod)/2); adamstark@38: } adamstark@38: adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // fix tempo to roughly around some value adamstark@38: void BTrack :: fixtempo(float tempo) adamstark@38: { adamstark@38: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@38: while (tempo > 160) adamstark@38: { adamstark@38: tempo = tempo/2; adamstark@38: } adamstark@38: adamstark@38: while (tempo < 80) adamstark@38: { adamstark@38: tempo = tempo * 2; adamstark@38: } adamstark@38: adamstark@38: // convert tempo from bpm value to integer index of tempo probability adamstark@38: int tempo_index = (int) round((tempo - 80)/2); adamstark@38: adamstark@38: // now set previous fixed previous tempo observation values to zero adamstark@38: for (int i=0;i < 41;i++) adamstark@38: { adamstark@38: prev_delta_fix[i] = 0; adamstark@38: } adamstark@38: adamstark@38: // set desired tempo index to 1 adamstark@38: prev_delta_fix[tempo_index] = 1; adamstark@38: adamstark@38: // set the tempo fix flag adamstark@38: tempofix = 1; adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // do not fix the tempo anymore adamstark@38: void BTrack :: unfixtempo() adamstark@38: { adamstark@38: // set the tempo fix flag adamstark@38: tempofix = 0; adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // Convert detection function from N samples to 512 adamstark@38: void BTrack :: dfconvert() adamstark@38: { adamstark@38: float output[512]; adamstark@38: adamstark@38: double src_ratio = 512.0/((double) dfbuffer_size); adamstark@38: int BUFFER_LEN = dfbuffer_size; adamstark@38: int output_len; adamstark@38: SRC_DATA src_data ; adamstark@38: adamstark@38: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; adamstark@38: output_len = 512; adamstark@38: adamstark@38: src_data.data_in = dfbuffer; adamstark@38: src_data.input_frames = BUFFER_LEN; adamstark@38: adamstark@38: src_data.src_ratio = src_ratio; adamstark@38: adamstark@38: src_data.data_out = output; adamstark@38: src_data.output_frames = output_len; adamstark@38: adamstark@38: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); adamstark@38: adamstark@38: for (int i = 0;i < output_len;i++) adamstark@38: { adamstark@38: df512[i] = src_data.data_out[i]; adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // To calculate the current tempo expressed as the beat period in detection function samples adamstark@38: void BTrack :: calcTempo() adamstark@38: { adamstark@38: // adaptive threshold on input adamstark@38: adapt_thresh(df512,512); adamstark@38: adamstark@38: // calculate auto-correlation function of detection function adamstark@38: acf_bal(df512); adamstark@38: adamstark@38: // calculate output of comb filterbank adamstark@38: getrcfoutput(); adamstark@38: adamstark@38: adamstark@38: // adaptive threshold on rcf adamstark@38: adapt_thresh(rcf,128); adamstark@38: adamstark@38: adamstark@38: int t_index; adamstark@38: int t_index2; adamstark@38: // calculate tempo observation vector from bperiod observation vector adamstark@38: for (int i = 0;i < 41;i++) adamstark@38: { adamstark@38: t_index = (int) round(p_fact / ((float) ((2*i)+80))); adamstark@38: t_index2 = (int) round(p_fact / ((float) ((4*i)+160))); adamstark@38: adamstark@38: adamstark@38: t_obs[i] = rcf[t_index-1] + rcf[t_index2-1]; adamstark@38: } adamstark@38: adamstark@38: adamstark@38: float maxval; adamstark@38: float maxind; adamstark@38: float curval; adamstark@38: adamstark@38: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function adamstark@38: if (tempofix == 1) adamstark@38: { adamstark@38: for (int k = 0;k < 41;k++) adamstark@38: { adamstark@38: prev_delta[k] = prev_delta_fix[k]; adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: for (int j=0;j < 41;j++) adamstark@38: { adamstark@38: maxval = -1; adamstark@38: for (int i = 0;i < 41;i++) adamstark@38: { adamstark@38: curval = prev_delta[i]*t_tmat[i][j]; adamstark@38: adamstark@38: if (curval > maxval) adamstark@38: { adamstark@38: maxval = curval; adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: delta[j] = maxval*t_obs[j]; adamstark@38: } adamstark@38: adamstark@38: adamstark@38: normalise(delta,41); adamstark@38: adamstark@38: maxind = -1; adamstark@38: maxval = -1; adamstark@38: adamstark@38: for (int j=0;j < 41;j++) adamstark@38: { adamstark@38: if (delta[j] > maxval) adamstark@38: { adamstark@38: maxval = delta[j]; adamstark@38: maxind = j; adamstark@38: } adamstark@38: adamstark@38: prev_delta[j] = delta[j]; adamstark@38: } adamstark@38: adamstark@38: bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize))); adamstark@38: adamstark@38: if (bperiod > 0) adamstark@38: { adamstark@38: est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod); adamstark@38: } adamstark@38: adamstark@38: //cout << bperiod << endl; adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // calculates an adaptive threshold which is used to remove low level energy from detection function and emphasise peaks adamstark@38: void BTrack :: adapt_thresh(float x[],int N) adamstark@38: { adamstark@38: //int N = 512; // length of df adamstark@38: int i = 0; adamstark@38: int k,t = 0; adamstark@38: float x_thresh[N]; adamstark@38: adamstark@38: int p_post = 7; adamstark@38: int p_pre = 8; adamstark@38: adamstark@38: t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays adamstark@38: adamstark@38: // find threshold for first 't' samples, where a full average cannot be computed yet adamstark@38: for (i = 0;i <= t;i++) adamstark@38: { adamstark@38: k = min((i+p_pre),N); adamstark@38: x_thresh[i] = mean_array(x,1,k); adamstark@38: } adamstark@38: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] adamstark@38: for (i = t+1;i < N-p_post;i++) adamstark@38: { adamstark@38: x_thresh[i] = mean_array(x,i-p_pre,i+p_post); adamstark@38: } adamstark@38: // for last few samples calculate threshold, again, not enough samples to do as above adamstark@38: for (i = N-p_post;i < N;i++) adamstark@38: { adamstark@38: k = max((i-p_post),1); adamstark@38: x_thresh[i] = mean_array(x,k,N); adamstark@38: } adamstark@38: adamstark@38: // subtract the threshold from the detection function and check that it is not less than 0 adamstark@38: for (i = 0;i < N;i++) adamstark@38: { adamstark@38: x[i] = x[i] - x_thresh[i]; adamstark@38: if (x[i] < 0) adamstark@38: { adamstark@38: x[i] = 0; adamstark@38: } adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // returns the output of the comb filter adamstark@38: void BTrack :: getrcfoutput() adamstark@38: { adamstark@38: int numelem; adamstark@38: adamstark@38: for (int i = 0;i < 128;i++) adamstark@38: { adamstark@38: rcf[i] = 0; adamstark@38: } adamstark@38: adamstark@38: numelem = 4; adamstark@38: adamstark@38: for (int i = 2;i <= 127;i++) // max beat period adamstark@38: { adamstark@38: for (int a = 1;a <= numelem;a++) // number of comb elements adamstark@38: { adamstark@38: for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements adamstark@38: { adamstark@38: rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row adamstark@38: } adamstark@38: } adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // calculates the balanced autocorrelation of the smoothed detection function adamstark@38: void BTrack :: acf_bal(float df_thresh[]) adamstark@38: { adamstark@38: int l, n = 0; adamstark@38: float sum, tmp; adamstark@38: adamstark@38: // for l lags from 0-511 adamstark@38: for (l = 0;l < 512;l++) adamstark@38: { adamstark@38: sum = 0; adamstark@38: adamstark@38: // for n samples from 0 - (512-lag) adamstark@38: for (n = 0;n < (512-l);n++) adamstark@38: { adamstark@38: tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l) adamstark@38: sum = sum + tmp; // add to sum adamstark@38: } adamstark@38: adamstark@38: acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // calculates the mean of values in an array from index locations [start,end] adamstark@38: float BTrack :: mean_array(float array[],int start,int end) adamstark@38: { adamstark@38: int i; adamstark@38: double sum = 0; adamstark@38: adamstark@38: int length = end - start; adamstark@38: adamstark@38: // find sum adamstark@38: for (i = start;i < end;i++) adamstark@38: { adamstark@38: sum = sum + array[i]; adamstark@38: } adamstark@38: adamstark@38: if (length > 0) adamstark@38: { adamstark@38: return sum / length; // average and return adamstark@38: } adamstark@38: else adamstark@38: { adamstark@38: return 0; adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // normalise the array adamstark@38: void BTrack :: normalise(float array[],int N) adamstark@38: { adamstark@38: double sum = 0; adamstark@38: adamstark@38: for (int i = 0;i < N;i++) adamstark@38: { adamstark@38: if (array[i] > 0) adamstark@38: { adamstark@38: sum = sum + array[i]; adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: if (sum > 0) adamstark@38: { adamstark@38: for (int i = 0;i < N;i++) adamstark@38: { adamstark@38: array[i] = array[i] / sum; adamstark@38: } adamstark@38: } adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // plot contents of detection function buffer adamstark@38: void BTrack :: plotdfbuffer() adamstark@38: { adamstark@38: for (int i=0;i < dfbuffer_size;i++) adamstark@38: { adamstark@38: cout << dfbuffer[i] << endl; adamstark@38: } adamstark@38: adamstark@38: cout << "--------------------------------" << endl; adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // update the cumulative score adamstark@38: void BTrack :: updatecumscore(float df_sample) adamstark@38: { adamstark@38: int start, end, winsize; adamstark@38: float max; adamstark@38: adamstark@38: start = dfbuffer_size - round(2*bperiod); adamstark@38: end = dfbuffer_size - round(bperiod/2); adamstark@38: winsize = end-start+1; adamstark@38: adamstark@38: float w1[winsize]; adamstark@38: float v = -2*bperiod; adamstark@38: float wcumscore; adamstark@38: adamstark@38: adamstark@38: // create window adamstark@38: for (int i = 0;i < winsize;i++) adamstark@38: { adamstark@38: w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2); adamstark@38: v = v+1; adamstark@38: } adamstark@38: adamstark@38: // calculate new cumulative score value adamstark@38: max = 0; adamstark@38: int n = 0; adamstark@38: for (int i=start;i <= end;i++) adamstark@38: { adamstark@38: wcumscore = cumscore[i]*w1[n]; adamstark@38: adamstark@38: if (wcumscore > max) adamstark@38: { adamstark@38: max = wcumscore; adamstark@38: } adamstark@38: n++; adamstark@38: } adamstark@38: adamstark@38: adamstark@38: // shift cumulative score back one adamstark@38: for (int i = 0;i < (dfbuffer_size-1);i++) adamstark@38: { adamstark@38: cumscore[i] = cumscore[i+1]; adamstark@38: } adamstark@38: adamstark@38: // add new value to cumulative score adamstark@38: cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max); adamstark@38: adamstark@38: cscoreval = cumscore[dfbuffer_size-1]; adamstark@38: adamstark@38: //cout << cumscore[dfbuffer_size-1] << endl; adamstark@38: adamstark@38: } adamstark@38: adamstark@38: //------------------------------------------------------------------------------- adamstark@38: // plot contents of detection function buffer adamstark@38: void BTrack :: predictbeat() adamstark@38: { adamstark@38: int winsize = (int) bperiod; adamstark@38: float fcumscore[dfbuffer_size + winsize]; adamstark@38: float w2[winsize]; adamstark@38: // copy cumscore to first part of fcumscore adamstark@38: for (int i = 0;i < dfbuffer_size;i++) adamstark@38: { adamstark@38: fcumscore[i] = cumscore[i]; adamstark@38: } adamstark@38: adamstark@38: // create future window adamstark@38: float v = 1; adamstark@38: for (int i = 0;i < winsize;i++) adamstark@38: { adamstark@38: w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2))); adamstark@38: v++; adamstark@38: } adamstark@38: adamstark@38: // create past window adamstark@38: v = -2*bperiod; adamstark@38: int start = dfbuffer_size - round(2*bperiod); adamstark@38: int end = dfbuffer_size - round(bperiod/2); adamstark@38: int pastwinsize = end-start+1; adamstark@38: float w1[pastwinsize]; adamstark@38: adamstark@38: for (int i = 0;i < pastwinsize;i++) adamstark@38: { adamstark@38: w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2); adamstark@38: v = v+1; adamstark@38: } adamstark@38: adamstark@38: adamstark@38: adamstark@38: // calculate future cumulative score adamstark@38: float max; adamstark@38: int n; adamstark@38: float wcumscore; adamstark@38: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) adamstark@38: { adamstark@38: start = i - round(2*bperiod); adamstark@38: end = i - round(bperiod/2); adamstark@38: adamstark@38: max = 0; adamstark@38: n = 0; adamstark@38: for (int k=start;k <= end;k++) adamstark@38: { adamstark@38: wcumscore = fcumscore[k]*w1[n]; adamstark@38: adamstark@38: if (wcumscore > max) adamstark@38: { adamstark@38: max = wcumscore; adamstark@38: } adamstark@38: n++; adamstark@38: } adamstark@38: adamstark@38: fcumscore[i] = max; adamstark@38: } adamstark@38: adamstark@38: adamstark@38: // predict beat adamstark@38: max = 0; adamstark@38: n = 0; adamstark@38: adamstark@38: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) adamstark@38: { adamstark@38: wcumscore = fcumscore[i]*w2[n]; adamstark@38: adamstark@38: if (wcumscore > max) adamstark@38: { adamstark@38: max = wcumscore; adamstark@38: beat = n; adamstark@38: } adamstark@38: adamstark@38: n++; adamstark@38: } adamstark@38: adamstark@38: adamstark@38: // set beat adamstark@38: beat = beat; adamstark@38: adamstark@38: // set next prediction time adamstark@38: m0 = beat+round(bperiod/2); adamstark@38: adamstark@38: adamstark@38: }