adamstark@5: //======================================================================= adamstark@5: /** @file OnsetDetectionFunction.cpp adamstark@5: * @brief A class for calculating onset detection functions adamstark@5: * @author Adam Stark adamstark@5: * @copyright Copyright (C) 2008-2014 Queen Mary University of London adamstark@5: * adamstark@5: * This program is free software: you can redistribute it and/or modify adamstark@5: * it under the terms of the GNU General Public License as published by adamstark@5: * the Free Software Foundation, either version 3 of the License, or adamstark@5: * (at your option) any later version. adamstark@5: * adamstark@5: * This program is distributed in the hope that it will be useful, adamstark@5: * but WITHOUT ANY WARRANTY; without even the implied warranty of adamstark@5: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the adamstark@5: * GNU General Public License for more details. adamstark@5: * adamstark@5: * You should have received a copy of the GNU General Public License adamstark@5: * along with this program. If not, see . adamstark@5: */ adamstark@5: //======================================================================= adamstark@5: adamstark@5: #include adamstark@5: #include "OnsetDetectionFunction.h" adamstark@5: adamstark@15: //======================================================================= adamstark@22: OnsetDetectionFunction::OnsetDetectionFunction(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType) adamstark@5: { adamstark@5: // indicate that we have not initialised yet adamstark@27: initialised = false; adamstark@5: adamstark@5: // set pi adamstark@5: pi = 3.14159265358979; adamstark@5: adamstark@5: // initialise with arguments to constructor adamstark@22: initialise(hopSize_,frameSize_,onsetDetectionFunctionType_,windowType); adamstark@5: } adamstark@5: adamstark@5: adamstark@15: //======================================================================= adamstark@22: OnsetDetectionFunction::~OnsetDetectionFunction() adamstark@5: { adamstark@27: if (initialised) adamstark@27: { adamstark@27: // destroy fft plan adamstark@27: fftw_destroy_plan(p); adamstark@27: fftw_free(complexIn); adamstark@27: fftw_free(complexOut); adamstark@27: } adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction::initialise(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType) adamstark@5: { adamstark@27: if (initialised) // if we have already initialised FFT plan adamstark@5: { adamstark@5: // destroy fft plan adamstark@5: fftw_destroy_plan(p); adamstark@22: fftw_free(complexIn); adamstark@22: fftw_free(complexOut); adamstark@27: adamstark@5: } adamstark@5: adamstark@22: hopSize = hopSize_; // set hopsize adamstark@22: frameSize = frameSize_; // set framesize adamstark@5: adamstark@22: onsetDetectionFunctionType = onsetDetectionFunctionType_; // set detection function type adamstark@5: adamstark@5: // initialise buffers adamstark@27: frame.resize(frameSize); adamstark@27: window.resize(frameSize); adamstark@27: magSpec.resize(frameSize); adamstark@27: prevMagSpec.resize(frameSize); adamstark@27: phase.resize(frameSize); adamstark@27: prevPhase.resize(frameSize); adamstark@27: prevPhase2.resize(frameSize); adamstark@5: adamstark@5: adamstark@5: // set the window to the specified type adamstark@22: switch (windowType){ adamstark@20: case RectangularWindow: adamstark@22: calculateRectangularWindow(); // Rectangular window adamstark@5: break; adamstark@20: case HanningWindow: adamstark@22: calculateHanningWindow(); // Hanning Window adamstark@5: break; adamstark@20: case HammingWindow: adamstark@22: calclulateHammingWindow(); // Hamming Window adamstark@5: break; adamstark@20: case BlackmanWindow: adamstark@22: calculateBlackmanWindow(); // Blackman Window adamstark@5: break; adamstark@20: case TukeyWindow: adamstark@22: calculateTukeyWindow(); // Tukey Window adamstark@5: break; adamstark@5: default: adamstark@22: calculateHanningWindow(); // DEFAULT: Hanning Window adamstark@5: } adamstark@5: adamstark@5: // initialise previous magnitude spectrum to zero adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@22: prevMagSpec[i] = 0.0; adamstark@22: prevPhase[i] = 0.0; adamstark@22: prevPhase2[i] = 0.0; adamstark@5: frame[i] = 0.0; adamstark@5: } adamstark@5: adamstark@22: prevEnergySum = 0.0; // initialise previous energy sum value to zero adamstark@5: adamstark@5: /* Init fft */ adamstark@22: complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * frameSize); // complex array to hold fft data adamstark@22: complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * frameSize); // complex array to hold fft data adamstark@22: p = fftw_plan_dft_1d(frameSize, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation adamstark@5: adamstark@27: initialised = true; adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: setOnsetDetectionFunctionType(int onsetDetectionFunctionType_) adamstark@5: { adamstark@22: onsetDetectionFunctionType = onsetDetectionFunctionType_; // set detection function type adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: calculateOnsetDetectionFunctionSample(double *buffer) adamstark@5: { adamstark@22: double odfSample; adamstark@5: adamstark@5: // shift audio samples back in frame by hop size adamstark@22: for (int i = 0; i < (frameSize-hopSize);i++) adamstark@5: { adamstark@22: frame[i] = frame[i+hopSize]; adamstark@5: } adamstark@5: adamstark@5: // add new samples to frame from input buffer adamstark@5: int j = 0; adamstark@22: for (int i = (frameSize-hopSize);i < frameSize;i++) adamstark@5: { adamstark@22: frame[i] = buffer[j]; adamstark@5: j++; adamstark@5: } adamstark@5: adamstark@22: switch (onsetDetectionFunctionType){ adamstark@20: case EnergyEnvelope: adamstark@20: { adamstark@20: // calculate energy envelope detection function sample adamstark@22: odfSample = energyEnvelope(); adamstark@5: break; adamstark@20: } adamstark@20: case EnergyDifference: adamstark@20: { adamstark@20: // calculate half-wave rectified energy difference detection function sample adamstark@22: odfSample = energyDifference(); adamstark@5: break; adamstark@20: } adamstark@20: case SpectralDifference: adamstark@20: { adamstark@20: // calculate spectral difference detection function sample adamstark@22: odfSample = spectralDifference(); adamstark@5: break; adamstark@20: } adamstark@20: case SpectralDifferenceHWR: adamstark@20: { adamstark@20: // calculate spectral difference detection function sample (half wave rectified) adamstark@22: odfSample = spectralDifferenceHWR(); adamstark@5: break; adamstark@20: } adamstark@20: case PhaseDeviation: adamstark@20: { adamstark@20: // calculate phase deviation detection function sample (half wave rectified) adamstark@22: odfSample = phaseDeviation(); adamstark@5: break; adamstark@20: } adamstark@20: case ComplexSpectralDifference: adamstark@20: { adamstark@20: // calcualte complex spectral difference detection function sample adamstark@22: odfSample = complexSpectralDifference(); adamstark@5: break; adamstark@20: } adamstark@20: case ComplexSpectralDifferenceHWR: adamstark@20: { adamstark@20: // calcualte complex spectral difference detection function sample (half-wave rectified) adamstark@22: odfSample = complexSpectralDifferenceHWR(); adamstark@5: break; adamstark@20: } adamstark@20: case HighFrequencyContent: adamstark@20: { adamstark@20: // calculate high frequency content detection function sample adamstark@22: odfSample = highFrequencyContent(); adamstark@5: break; adamstark@20: } adamstark@20: case HighFrequencySpectralDifference: adamstark@20: { adamstark@20: // calculate high frequency spectral difference detection function sample adamstark@22: odfSample = highFrequencySpectralDifference(); adamstark@5: break; adamstark@20: } adamstark@20: case HighFrequencySpectralDifferenceHWR: adamstark@20: { adamstark@20: // calculate high frequency spectral difference detection function (half-wave rectified) adamstark@22: odfSample = highFrequencySpectralDifferenceHWR(); adamstark@20: break; adamstark@20: } adamstark@5: default: adamstark@20: { adamstark@22: odfSample = 1.0; adamstark@20: } adamstark@5: } adamstark@5: adamstark@22: return odfSample; adamstark@5: } adamstark@5: adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: performFFT() adamstark@5: { adamstark@22: int fsize2 = (frameSize/2); adamstark@5: adamstark@5: // window frame and copy to complex array, swapping the first and second half of the signal adamstark@5: for (int i = 0;i < fsize2;i++) adamstark@5: { adamstark@22: complexIn[i][0] = frame[i+fsize2] * window[i+fsize2]; adamstark@22: complexIn[i][1] = 0.0; adamstark@22: complexIn[i+fsize2][0] = frame[i] * window[i]; adamstark@22: complexIn[i+fsize2][1] = 0.0; adamstark@5: } adamstark@5: adamstark@5: // perform the fft adamstark@5: fftw_execute(p); adamstark@5: } adamstark@5: adamstark@5: //////////////////////////////////////////////////////////////////////////////////////////////// adamstark@5: //////////////////////////////////////////////////////////////////////////////////////////////// adamstark@5: ////////////////////////////// Methods for Detection Functions ///////////////////////////////// adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: energyEnvelope() adamstark@5: { adamstark@5: double sum; adamstark@5: adamstark@5: sum = 0; // initialise sum adamstark@5: adamstark@5: // sum the squares of the samples adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: sum = sum + (frame[i]*frame[i]); adamstark@5: } adamstark@5: adamstark@5: return sum; // return sum adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: energyDifference() adamstark@5: { adamstark@5: double sum; adamstark@5: double sample; adamstark@5: adamstark@5: sum = 0; // initialise sum adamstark@5: adamstark@5: // sum the squares of the samples adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: sum = sum + (frame[i]*frame[i]); adamstark@5: } adamstark@5: adamstark@22: sample = sum - prevEnergySum; // sample is first order difference in energy adamstark@5: adamstark@22: prevEnergySum = sum; // store energy value for next calculation adamstark@5: adamstark@5: if (sample > 0) adamstark@5: { adamstark@5: return sample; // return difference adamstark@5: } adamstark@5: else adamstark@5: { adamstark@5: return 0; adamstark@5: } adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: spectralDifference() adamstark@5: { adamstark@5: double diff; adamstark@5: double sum; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: // compute first (N/2)+1 mag values adamstark@22: for (int i = 0;i < (frameSize/2)+1;i++) adamstark@5: { adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: } adamstark@5: // mag spec symmetric above (N/2)+1 so copy previous values adamstark@22: for (int i = (frameSize/2)+1;i < frameSize;i++) adamstark@5: { adamstark@22: magSpec[i] = magSpec[frameSize-i]; adamstark@5: } adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate difference adamstark@22: diff = magSpec[i] - prevMagSpec[i]; adamstark@5: adamstark@5: // ensure all difference values are positive adamstark@5: if (diff < 0) adamstark@5: { adamstark@5: diff = diff*-1; adamstark@5: } adamstark@5: adamstark@5: // add difference to sum adamstark@5: sum = sum+diff; adamstark@5: adamstark@5: // store magnitude spectrum bin for next detection function sample calculation adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: spectralDifferenceHWR() adamstark@5: { adamstark@5: double diff; adamstark@5: double sum; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: // compute first (N/2)+1 mag values adamstark@22: for (int i = 0;i < (frameSize/2)+1;i++) adamstark@5: { adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: } adamstark@5: // mag spec symmetric above (N/2)+1 so copy previous values adamstark@22: for (int i = (frameSize/2)+1;i < frameSize;i++) adamstark@5: { adamstark@22: magSpec[i] = magSpec[frameSize-i]; adamstark@5: } adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate difference adamstark@22: diff = magSpec[i] - prevMagSpec[i]; adamstark@5: adamstark@5: // only add up positive differences adamstark@5: if (diff > 0) adamstark@5: { adamstark@5: // add difference to sum adamstark@5: sum = sum+diff; adamstark@5: } adamstark@5: adamstark@5: adamstark@5: adamstark@5: // store magnitude spectrum bin for next detection function sample calculation adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: phaseDeviation() adamstark@5: { adamstark@5: double dev,pdev; adamstark@5: double sum; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@5: // compute phase values from fft output and sum deviations adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate phase value adamstark@22: phase[i] = atan2(complexOut[i][1],complexOut[i][0]); adamstark@5: adamstark@5: // calculate magnitude value adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: adamstark@5: adamstark@5: // if bin is not just a low energy bin then examine phase deviation adamstark@22: if (magSpec[i] > 0.1) adamstark@5: { adamstark@22: dev = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; // phase deviation adamstark@5: pdev = princarg(dev); // wrap into [-pi,pi] range adamstark@5: adamstark@5: // make all values positive adamstark@5: if (pdev < 0) adamstark@5: { adamstark@5: pdev = pdev*-1; adamstark@5: } adamstark@5: adamstark@5: // add to sum adamstark@5: sum = sum + pdev; adamstark@5: } adamstark@5: adamstark@5: // store values for next calculation adamstark@22: prevPhase2[i] = prevPhase[i]; adamstark@22: prevPhase[i] = phase[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: complexSpectralDifference() adamstark@5: { adamstark@5: double dev,pdev; adamstark@5: double sum; adamstark@5: double mag_diff,phase_diff; adamstark@5: double value; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@5: // compute phase values from fft output and sum deviations adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate phase value adamstark@22: phase[i] = atan2(complexOut[i][1],complexOut[i][0]); adamstark@5: adamstark@5: // calculate magnitude value adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: adamstark@5: adamstark@5: // phase deviation adamstark@22: dev = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; adamstark@5: adamstark@5: // wrap into [-pi,pi] range adamstark@5: pdev = princarg(dev); adamstark@5: adamstark@5: adamstark@5: // calculate magnitude difference (real part of Euclidean distance between complex frames) adamstark@22: mag_diff = magSpec[i] - prevMagSpec[i]; adamstark@5: adamstark@5: // calculate phase difference (imaginary part of Euclidean distance between complex frames) adamstark@22: phase_diff = -magSpec[i]*sin(pdev); adamstark@5: adamstark@5: adamstark@5: adamstark@5: // square real and imaginary parts, sum and take square root adamstark@5: value = sqrt(pow(mag_diff,2) + pow(phase_diff,2)); adamstark@5: adamstark@5: adamstark@5: // add to sum adamstark@5: sum = sum + value; adamstark@5: adamstark@5: adamstark@5: // store values for next calculation adamstark@22: prevPhase2[i] = prevPhase[i]; adamstark@22: prevPhase[i] = phase[i]; adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: complexSpectralDifferenceHWR() adamstark@5: { adamstark@5: double dev,pdev; adamstark@5: double sum; adamstark@5: double mag_diff,phase_diff; adamstark@5: double value; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@5: // compute phase values from fft output and sum deviations adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate phase value adamstark@22: phase[i] = atan2(complexOut[i][1],complexOut[i][0]); adamstark@5: adamstark@5: // calculate magnitude value adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: adamstark@5: adamstark@5: // phase deviation adamstark@22: dev = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; adamstark@5: adamstark@5: // wrap into [-pi,pi] range adamstark@5: pdev = princarg(dev); adamstark@5: adamstark@5: adamstark@5: // calculate magnitude difference (real part of Euclidean distance between complex frames) adamstark@22: mag_diff = magSpec[i] - prevMagSpec[i]; adamstark@5: adamstark@5: // if we have a positive change in magnitude, then include in sum, otherwise ignore (half-wave rectification) adamstark@5: if (mag_diff > 0) adamstark@5: { adamstark@5: // calculate phase difference (imaginary part of Euclidean distance between complex frames) adamstark@22: phase_diff = -magSpec[i]*sin(pdev); adamstark@5: adamstark@5: // square real and imaginary parts, sum and take square root adamstark@5: value = sqrt(pow(mag_diff,2) + pow(phase_diff,2)); adamstark@5: adamstark@5: // add to sum adamstark@5: sum = sum + value; adamstark@5: } adamstark@5: adamstark@5: // store values for next calculation adamstark@22: prevPhase2[i] = prevPhase[i]; adamstark@22: prevPhase[i] = phase[i]; adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: highFrequencyContent() adamstark@5: { adamstark@5: double sum; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@5: // compute phase values from fft output and sum deviations adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate magnitude value adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: adamstark@5: adamstark@22: sum = sum + (magSpec[i]*((double) (i+1))); adamstark@5: adamstark@5: // store values for next calculation adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: highFrequencySpectralDifference() adamstark@5: { adamstark@5: double sum; adamstark@5: double mag_diff; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@5: // compute phase values from fft output and sum deviations adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate magnitude value adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: adamstark@5: // calculate difference adamstark@22: mag_diff = magSpec[i] - prevMagSpec[i]; adamstark@5: adamstark@5: if (mag_diff < 0) adamstark@5: { adamstark@5: mag_diff = -mag_diff; adamstark@5: } adamstark@5: adamstark@5: sum = sum + (mag_diff*((double) (i+1))); adamstark@5: adamstark@5: // store values for next calculation adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: highFrequencySpectralDifferenceHWR() adamstark@5: { adamstark@5: double sum; adamstark@5: double mag_diff; adamstark@5: adamstark@5: // perform the FFT adamstark@22: performFFT(); adamstark@5: adamstark@5: sum = 0; // initialise sum to zero adamstark@5: adamstark@5: // compute phase values from fft output and sum deviations adamstark@22: for (int i = 0;i < frameSize;i++) adamstark@5: { adamstark@5: // calculate magnitude value adamstark@22: magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); adamstark@5: adamstark@5: // calculate difference adamstark@22: mag_diff = magSpec[i] - prevMagSpec[i]; adamstark@5: adamstark@5: if (mag_diff > 0) adamstark@5: { adamstark@5: sum = sum + (mag_diff*((double) (i+1))); adamstark@5: } adamstark@5: adamstark@5: // store values for next calculation adamstark@22: prevMagSpec[i] = magSpec[i]; adamstark@5: } adamstark@5: adamstark@5: return sum; adamstark@5: } adamstark@5: adamstark@5: adamstark@5: //////////////////////////////////////////////////////////////////////////////////////////////// adamstark@5: //////////////////////////////////////////////////////////////////////////////////////////////// adamstark@5: ////////////////////////////// Methods to Calculate Windows //////////////////////////////////// adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: calculateHanningWindow() adamstark@5: { adamstark@5: double N; // variable to store framesize minus 1 adamstark@5: adamstark@22: N = (double) (frameSize-1); // framesize minus 1 adamstark@5: adamstark@5: // Hanning window calculation adamstark@22: for (int n = 0;n < frameSize;n++) adamstark@5: { adamstark@5: window[n] = 0.5*(1-cos(2*pi*(n/N))); adamstark@5: } adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: calclulateHammingWindow() adamstark@5: { adamstark@5: double N; // variable to store framesize minus 1 adamstark@5: double n_val; // double version of index 'n' adamstark@5: adamstark@22: N = (double) (frameSize-1); // framesize minus 1 adamstark@5: n_val = 0; adamstark@5: adamstark@5: // Hamming window calculation adamstark@22: for (int n = 0;n < frameSize;n++) adamstark@5: { adamstark@5: window[n] = 0.54 - (0.46*cos(2*pi*(n_val/N))); adamstark@5: n_val = n_val+1; adamstark@5: } adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: calculateBlackmanWindow() adamstark@5: { adamstark@5: double N; // variable to store framesize minus 1 adamstark@5: double n_val; // double version of index 'n' adamstark@5: adamstark@22: N = (double) (frameSize-1); // framesize minus 1 adamstark@5: n_val = 0; adamstark@5: adamstark@5: // Blackman window calculation adamstark@22: for (int n = 0;n < frameSize;n++) adamstark@5: { adamstark@5: window[n] = 0.42 - (0.5*cos(2*pi*(n_val/N))) + (0.08*cos(4*pi*(n_val/N))); adamstark@5: n_val = n_val+1; adamstark@5: } adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: calculateTukeyWindow() adamstark@5: { adamstark@5: double N; // variable to store framesize minus 1 adamstark@5: double n_val; // double version of index 'n' adamstark@5: double alpha; // alpha [default value = 0.5]; adamstark@5: adamstark@5: alpha = 0.5; adamstark@5: adamstark@22: N = (double) (frameSize-1); // framesize minus 1 adamstark@5: adamstark@5: // Tukey window calculation adamstark@5: adamstark@22: n_val = (double) (-1*((frameSize/2)))+1; adamstark@5: adamstark@22: for (int n = 0;n < frameSize;n++) // left taper adamstark@5: { adamstark@5: if ((n_val >= 0) && (n_val <= (alpha*(N/2)))) adamstark@5: { adamstark@5: window[n] = 1.0; adamstark@5: } adamstark@5: else if ((n_val <= 0) && (n_val >= (-1*alpha*(N/2)))) adamstark@5: { adamstark@5: window[n] = 1.0; adamstark@5: } adamstark@5: else adamstark@5: { adamstark@5: window[n] = 0.5*(1+cos(pi*(((2*n_val)/(alpha*N))-1))); adamstark@5: } adamstark@5: adamstark@5: n_val = n_val+1; adamstark@5: } adamstark@5: adamstark@5: } adamstark@5: adamstark@15: //======================================================================= adamstark@22: void OnsetDetectionFunction :: calculateRectangularWindow() adamstark@5: { adamstark@5: // Rectangular window calculation adamstark@22: for (int n = 0;n < frameSize;n++) adamstark@5: { adamstark@5: window[n] = 1.0; adamstark@5: } adamstark@5: } adamstark@5: adamstark@5: adamstark@5: adamstark@5: //////////////////////////////////////////////////////////////////////////////////////////////// adamstark@5: //////////////////////////////////////////////////////////////////////////////////////////////// adamstark@5: ///////////////////////////////// Other Handy Methods ////////////////////////////////////////// adamstark@5: adamstark@15: //======================================================================= adamstark@22: double OnsetDetectionFunction :: princarg(double phaseVal) adamstark@5: { adamstark@5: // if phase value is less than or equal to -pi then add 2*pi adamstark@22: while (phaseVal <= (-pi)) adamstark@5: { adamstark@22: phaseVal = phaseVal + (2*pi); adamstark@5: } adamstark@5: adamstark@5: // if phase value is larger than pi, then subtract 2*pi adamstark@22: while (phaseVal > pi) adamstark@5: { adamstark@22: phaseVal = phaseVal - (2*pi); adamstark@5: } adamstark@5: adamstark@22: return phaseVal; adamstark@5: } adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: adamstark@5: