adamstark@5: //=======================================================================
adamstark@5: /** @file BTrack.cpp
adamstark@6: * @brief BTrack - a real-time beat tracker
adamstark@5: * @author Adam Stark
adamstark@5: * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@5: *
adamstark@5: * This program is free software: you can redistribute it and/or modify
adamstark@5: * it under the terms of the GNU General Public License as published by
adamstark@5: * the Free Software Foundation, either version 3 of the License, or
adamstark@5: * (at your option) any later version.
adamstark@5: *
adamstark@5: * This program is distributed in the hope that it will be useful,
adamstark@5: * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@5: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@5: * GNU General Public License for more details.
adamstark@5: *
adamstark@5: * You should have received a copy of the GNU General Public License
adamstark@5: * along with this program. If not, see .
adamstark@5: */
adamstark@5: //=======================================================================
adamstark@5:
adamstark@5: #include
adamstark@15: #include
adamstark@5: #include "BTrack.h"
adamstark@5: #include "samplerate.h"
adamstark@5:
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: BTrack :: BTrack()
adamstark@5: {
adamstark@5: float rayparam = 43;
adamstark@5: float pi = 3.14159265;
adamstark@5:
adamstark@5:
adamstark@5: // initialise parameters
adamstark@5: tightness = 5;
adamstark@5: alpha = 0.9;
adamstark@5: tempo = 120;
adamstark@5: est_tempo = 120;
adamstark@5: p_fact = 60.*44100./512.;
adamstark@5:
adamstark@5: m0 = 10;
adamstark@5: beat = -1;
adamstark@5:
adamstark@5: playbeat = 0;
adamstark@5:
adamstark@5:
adamstark@5:
adamstark@5:
adamstark@5: // create rayleigh weighting vector
adamstark@5: for (int n = 0;n < 128;n++)
adamstark@5: {
adamstark@5: wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@5: }
adamstark@5:
adamstark@5: // initialise prev_delta
adamstark@5: for (int i = 0;i < 41;i++)
adamstark@5: {
adamstark@5: prev_delta[i] = 1;
adamstark@5: }
adamstark@5:
adamstark@5: float t_mu = 41/2;
adamstark@5: float m_sig;
adamstark@5: float x;
adamstark@5: // create tempo transition matrix
adamstark@5: m_sig = 41/8;
adamstark@5: for (int i = 0;i < 41;i++)
adamstark@5: {
adamstark@5: for (int j = 0;j < 41;j++)
adamstark@5: {
adamstark@5: x = j+1;
adamstark@5: t_mu = i+1;
adamstark@5: t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@5: // tempo is not fixed
adamstark@5: tempofix = 0;
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: BTrack :: ~BTrack()
adamstark@5: {
adamstark@5:
adamstark@5: }
adamstark@5:
adamstark@14:
adamstark@14:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: initialise(int fsize)
adamstark@5: {
adamstark@5: framesize = fsize;
adamstark@5: dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@5:
adamstark@5: bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@5:
adamstark@5: dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@5: cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@5:
adamstark@5:
adamstark@5: // initialise df_buffer to zeros
adamstark@5: for (int i = 0;i < dfbuffer_size;i++)
adamstark@5: {
adamstark@5: dfbuffer[i] = 0;
adamstark@5: cumscore[i] = 0;
adamstark@5:
adamstark@5:
adamstark@5: if ((i % ((int) round(bperiod))) == 0)
adamstark@5: {
adamstark@5: dfbuffer[i] = 1;
adamstark@5: }
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: process(float df_sample)
adamstark@5: {
adamstark@5: m0--;
adamstark@5: beat--;
adamstark@5: playbeat = 0;
adamstark@5:
adamstark@5: // move all samples back one step
adamstark@5: for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@5: {
adamstark@5: dfbuffer[i] = dfbuffer[i+1];
adamstark@5: }
adamstark@5:
adamstark@5: // add new sample at the end
adamstark@5: dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@5:
adamstark@5: // update cumulative score
adamstark@5: updatecumscore(df_sample);
adamstark@5:
adamstark@5: // if we are halfway between beats
adamstark@5: if (m0 == 0)
adamstark@5: {
adamstark@5: predictbeat();
adamstark@5: }
adamstark@5:
adamstark@5: // if we are at a beat
adamstark@5: if (beat == 0)
adamstark@5: {
adamstark@5: playbeat = 1; // indicate a beat should be output
adamstark@5:
adamstark@5: // recalculate the tempo
adamstark@5: dfconvert();
adamstark@5: calcTempo();
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: settempo(float tempo)
adamstark@5: {
adamstark@5:
adamstark@5: /////////// TEMPO INDICATION RESET //////////////////
adamstark@5:
adamstark@5: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5: while (tempo > 160)
adamstark@5: {
adamstark@5: tempo = tempo/2;
adamstark@5: }
adamstark@5:
adamstark@5: while (tempo < 80)
adamstark@5: {
adamstark@5: tempo = tempo * 2;
adamstark@5: }
adamstark@5:
adamstark@5: // convert tempo from bpm value to integer index of tempo probability
adamstark@5: int tempo_index = (int) round((tempo - 80)/2);
adamstark@5:
adamstark@5: // now set previous tempo observations to zero
adamstark@5: for (int i=0;i < 41;i++)
adamstark@5: {
adamstark@5: prev_delta[i] = 0;
adamstark@5: }
adamstark@5:
adamstark@5: // set desired tempo index to 1
adamstark@5: prev_delta[tempo_index] = 1;
adamstark@5:
adamstark@5:
adamstark@5: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@5:
adamstark@5: // calculate new beat period
adamstark@5: int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@5:
adamstark@5: int bcounter = 1;
adamstark@5: // initialise df_buffer to zeros
adamstark@5: for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@5: {
adamstark@5: if (bcounter == 1)
adamstark@5: {
adamstark@5: cumscore[i] = 150;
adamstark@5: dfbuffer[i] = 150;
adamstark@5: }
adamstark@5: else
adamstark@5: {
adamstark@5: cumscore[i] = 10;
adamstark@5: dfbuffer[i] = 10;
adamstark@5: }
adamstark@5:
adamstark@5: bcounter++;
adamstark@5:
adamstark@5: if (bcounter > new_bperiod)
adamstark@5: {
adamstark@5: bcounter = 1;
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@5: /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@5:
adamstark@5: // beat is now
adamstark@5: beat = 0;
adamstark@5:
adamstark@5: // offbeat is half of new beat period away
adamstark@5: m0 = (int) round(((float) new_bperiod)/2);
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: fixtempo(float tempo)
adamstark@5: {
adamstark@5: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5: while (tempo > 160)
adamstark@5: {
adamstark@5: tempo = tempo/2;
adamstark@5: }
adamstark@5:
adamstark@5: while (tempo < 80)
adamstark@5: {
adamstark@5: tempo = tempo * 2;
adamstark@5: }
adamstark@5:
adamstark@5: // convert tempo from bpm value to integer index of tempo probability
adamstark@5: int tempo_index = (int) round((tempo - 80)/2);
adamstark@5:
adamstark@5: // now set previous fixed previous tempo observation values to zero
adamstark@5: for (int i=0;i < 41;i++)
adamstark@5: {
adamstark@5: prev_delta_fix[i] = 0;
adamstark@5: }
adamstark@5:
adamstark@5: // set desired tempo index to 1
adamstark@5: prev_delta_fix[tempo_index] = 1;
adamstark@5:
adamstark@5: // set the tempo fix flag
adamstark@5: tempofix = 1;
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: unfixtempo()
adamstark@5: {
adamstark@5: // set the tempo fix flag
adamstark@5: tempofix = 0;
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: dfconvert()
adamstark@5: {
adamstark@5: float output[512];
adamstark@5:
adamstark@5: double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@5: int BUFFER_LEN = dfbuffer_size;
adamstark@5: int output_len;
adamstark@5: SRC_DATA src_data ;
adamstark@5:
adamstark@5: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@5: output_len = 512;
adamstark@5:
adamstark@5: src_data.data_in = dfbuffer;
adamstark@5: src_data.input_frames = BUFFER_LEN;
adamstark@5:
adamstark@5: src_data.src_ratio = src_ratio;
adamstark@5:
adamstark@5: src_data.data_out = output;
adamstark@5: src_data.output_frames = output_len;
adamstark@5:
adamstark@5: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@5:
adamstark@5: for (int i = 0;i < output_len;i++)
adamstark@5: {
adamstark@5: df512[i] = src_data.data_out[i];
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: calcTempo()
adamstark@5: {
adamstark@5: // adaptive threshold on input
adamstark@5: adapt_thresh(df512,512);
adamstark@5:
adamstark@5: // calculate auto-correlation function of detection function
adamstark@5: acf_bal(df512);
adamstark@5:
adamstark@5: // calculate output of comb filterbank
adamstark@5: getrcfoutput();
adamstark@5:
adamstark@5:
adamstark@5: // adaptive threshold on rcf
adamstark@5: adapt_thresh(rcf,128);
adamstark@5:
adamstark@5:
adamstark@5: int t_index;
adamstark@5: int t_index2;
adamstark@5: // calculate tempo observation vector from bperiod observation vector
adamstark@5: for (int i = 0;i < 41;i++)
adamstark@5: {
adamstark@5: t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@5: t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@5:
adamstark@5:
adamstark@5: t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@5: }
adamstark@5:
adamstark@5:
adamstark@5: float maxval;
adamstark@5: float maxind;
adamstark@5: float curval;
adamstark@5:
adamstark@5: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@5: if (tempofix == 1)
adamstark@5: {
adamstark@5: for (int k = 0;k < 41;k++)
adamstark@5: {
adamstark@5: prev_delta[k] = prev_delta_fix[k];
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@5: for (int j=0;j < 41;j++)
adamstark@5: {
adamstark@5: maxval = -1;
adamstark@5: for (int i = 0;i < 41;i++)
adamstark@5: {
adamstark@5: curval = prev_delta[i]*t_tmat[i][j];
adamstark@5:
adamstark@5: if (curval > maxval)
adamstark@5: {
adamstark@5: maxval = curval;
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@5: delta[j] = maxval*t_obs[j];
adamstark@5: }
adamstark@5:
adamstark@5:
adamstark@5: normalise(delta,41);
adamstark@5:
adamstark@5: maxind = -1;
adamstark@5: maxval = -1;
adamstark@5:
adamstark@5: for (int j=0;j < 41;j++)
adamstark@5: {
adamstark@5: if (delta[j] > maxval)
adamstark@5: {
adamstark@5: maxval = delta[j];
adamstark@5: maxind = j;
adamstark@5: }
adamstark@5:
adamstark@5: prev_delta[j] = delta[j];
adamstark@5: }
adamstark@5:
adamstark@5: bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@5:
adamstark@5: if (bperiod > 0)
adamstark@5: {
adamstark@5: est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@5: }
adamstark@5:
adamstark@5: //cout << bperiod << endl;
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: adapt_thresh(float x[],int N)
adamstark@5: {
adamstark@5: //int N = 512; // length of df
adamstark@5: int i = 0;
adamstark@5: int k,t = 0;
adamstark@5: float x_thresh[N];
adamstark@5:
adamstark@5: int p_post = 7;
adamstark@5: int p_pre = 8;
adamstark@5:
adamstark@15: t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@5:
adamstark@5: // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@5: for (i = 0;i <= t;i++)
adamstark@5: {
adamstark@15: k = std::min((i+p_pre),N);
adamstark@5: x_thresh[i] = mean_array(x,1,k);
adamstark@5: }
adamstark@5: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@5: for (i = t+1;i < N-p_post;i++)
adamstark@5: {
adamstark@5: x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@5: }
adamstark@5: // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@5: for (i = N-p_post;i < N;i++)
adamstark@5: {
adamstark@15: k = std::max((i-p_post),1);
adamstark@5: x_thresh[i] = mean_array(x,k,N);
adamstark@5: }
adamstark@5:
adamstark@5: // subtract the threshold from the detection function and check that it is not less than 0
adamstark@5: for (i = 0;i < N;i++)
adamstark@5: {
adamstark@5: x[i] = x[i] - x_thresh[i];
adamstark@5: if (x[i] < 0)
adamstark@5: {
adamstark@5: x[i] = 0;
adamstark@5: }
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: getrcfoutput()
adamstark@5: {
adamstark@5: int numelem;
adamstark@5:
adamstark@5: for (int i = 0;i < 128;i++)
adamstark@5: {
adamstark@5: rcf[i] = 0;
adamstark@5: }
adamstark@5:
adamstark@5: numelem = 4;
adamstark@5:
adamstark@5: for (int i = 2;i <= 127;i++) // max beat period
adamstark@5: {
adamstark@5: for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@5: {
adamstark@5: for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@5: {
adamstark@5: rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@5: }
adamstark@5: }
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: acf_bal(float df_thresh[])
adamstark@5: {
adamstark@5: int l, n = 0;
adamstark@5: float sum, tmp;
adamstark@5:
adamstark@5: // for l lags from 0-511
adamstark@5: for (l = 0;l < 512;l++)
adamstark@5: {
adamstark@5: sum = 0;
adamstark@5:
adamstark@5: // for n samples from 0 - (512-lag)
adamstark@5: for (n = 0;n < (512-l);n++)
adamstark@5: {
adamstark@5: tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@5: sum = sum + tmp; // add to sum
adamstark@5: }
adamstark@5:
adamstark@5: acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: float BTrack :: mean_array(float array[],int start,int end)
adamstark@5: {
adamstark@5: int i;
adamstark@6: double sum = 0;
adamstark@6:
adamstark@6: int length = end - start;
adamstark@5:
adamstark@5: // find sum
adamstark@6: for (i = start;i < end;i++)
adamstark@5: {
adamstark@5: sum = sum + array[i];
adamstark@5: }
adamstark@5:
adamstark@6: if (length > 0)
adamstark@6: {
adamstark@6: return sum / length; // average and return
adamstark@6: }
adamstark@6: else
adamstark@6: {
adamstark@6: return 0;
adamstark@6: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: normalise(float array[],int N)
adamstark@5: {
adamstark@5: double sum = 0;
adamstark@5:
adamstark@5: for (int i = 0;i < N;i++)
adamstark@5: {
adamstark@5: if (array[i] > 0)
adamstark@5: {
adamstark@5: sum = sum + array[i];
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@5: if (sum > 0)
adamstark@5: {
adamstark@5: for (int i = 0;i < N;i++)
adamstark@5: {
adamstark@5: array[i] = array[i] / sum;
adamstark@5: }
adamstark@5: }
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: updatecumscore(float df_sample)
adamstark@5: {
adamstark@5: int start, end, winsize;
adamstark@5: float max;
adamstark@5:
adamstark@5: start = dfbuffer_size - round(2*bperiod);
adamstark@5: end = dfbuffer_size - round(bperiod/2);
adamstark@5: winsize = end-start+1;
adamstark@5:
adamstark@5: float w1[winsize];
adamstark@5: float v = -2*bperiod;
adamstark@5: float wcumscore;
adamstark@5:
adamstark@5:
adamstark@5: // create window
adamstark@5: for (int i = 0;i < winsize;i++)
adamstark@5: {
adamstark@5: w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5: v = v+1;
adamstark@5: }
adamstark@5:
adamstark@5: // calculate new cumulative score value
adamstark@5: max = 0;
adamstark@5: int n = 0;
adamstark@5: for (int i=start;i <= end;i++)
adamstark@5: {
adamstark@5: wcumscore = cumscore[i]*w1[n];
adamstark@5:
adamstark@5: if (wcumscore > max)
adamstark@5: {
adamstark@5: max = wcumscore;
adamstark@5: }
adamstark@5: n++;
adamstark@5: }
adamstark@5:
adamstark@5:
adamstark@5: // shift cumulative score back one
adamstark@5: for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@5: {
adamstark@5: cumscore[i] = cumscore[i+1];
adamstark@5: }
adamstark@5:
adamstark@5: // add new value to cumulative score
adamstark@5: cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@5:
adamstark@5: cscoreval = cumscore[dfbuffer_size-1];
adamstark@5:
adamstark@5: //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@5:
adamstark@5: }
adamstark@5:
adamstark@14: //=======================================================================
adamstark@5: void BTrack :: predictbeat()
adamstark@5: {
adamstark@5: int winsize = (int) bperiod;
adamstark@5: float fcumscore[dfbuffer_size + winsize];
adamstark@5: float w2[winsize];
adamstark@5: // copy cumscore to first part of fcumscore
adamstark@5: for (int i = 0;i < dfbuffer_size;i++)
adamstark@5: {
adamstark@5: fcumscore[i] = cumscore[i];
adamstark@5: }
adamstark@5:
adamstark@5: // create future window
adamstark@5: float v = 1;
adamstark@5: for (int i = 0;i < winsize;i++)
adamstark@5: {
adamstark@5: w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@5: v++;
adamstark@5: }
adamstark@5:
adamstark@5: // create past window
adamstark@5: v = -2*bperiod;
adamstark@5: int start = dfbuffer_size - round(2*bperiod);
adamstark@5: int end = dfbuffer_size - round(bperiod/2);
adamstark@5: int pastwinsize = end-start+1;
adamstark@5: float w1[pastwinsize];
adamstark@5:
adamstark@5: for (int i = 0;i < pastwinsize;i++)
adamstark@5: {
adamstark@5: w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5: v = v+1;
adamstark@5: }
adamstark@5:
adamstark@5:
adamstark@5:
adamstark@5: // calculate future cumulative score
adamstark@5: float max;
adamstark@5: int n;
adamstark@5: float wcumscore;
adamstark@5: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5: {
adamstark@5: start = i - round(2*bperiod);
adamstark@5: end = i - round(bperiod/2);
adamstark@5:
adamstark@5: max = 0;
adamstark@5: n = 0;
adamstark@5: for (int k=start;k <= end;k++)
adamstark@5: {
adamstark@5: wcumscore = fcumscore[k]*w1[n];
adamstark@5:
adamstark@5: if (wcumscore > max)
adamstark@5: {
adamstark@5: max = wcumscore;
adamstark@5: }
adamstark@5: n++;
adamstark@5: }
adamstark@5:
adamstark@5: fcumscore[i] = max;
adamstark@5: }
adamstark@5:
adamstark@5:
adamstark@5: // predict beat
adamstark@5: max = 0;
adamstark@5: n = 0;
adamstark@5:
adamstark@5: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5: {
adamstark@5: wcumscore = fcumscore[i]*w2[n];
adamstark@5:
adamstark@5: if (wcumscore > max)
adamstark@5: {
adamstark@5: max = wcumscore;
adamstark@5: beat = n;
adamstark@5: }
adamstark@5:
adamstark@5: n++;
adamstark@5: }
adamstark@5:
adamstark@5:
adamstark@5: // set beat
adamstark@14: //beat = beat;
adamstark@5:
adamstark@5: // set next prediction time
adamstark@5: m0 = beat+round(bperiod/2);
adamstark@5:
adamstark@5:
adamstark@5: }