Mercurial > hg > btrack
view src/OnsetDetectionFunction.cpp @ 86:5eeabb24d677
Fixed implementation issue in complex spectral difference (and its HWR cousin) - thanks to @zbanks for pointing this out. Also updated README for new version
author | Adam Stark <adamstark.uk@gmail.com> |
---|---|
date | Sun, 10 Jan 2016 11:36:14 +0000 |
parents | b387d8327729 |
children | f6708e4c69f1 |
line wrap: on
line source
//======================================================================= /** @file OnsetDetectionFunction.cpp * @brief A class for calculating onset detection functions * @author Adam Stark * @copyright Copyright (C) 2008-2014 Queen Mary University of London * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ //======================================================================= #include <math.h> #include "OnsetDetectionFunction.h" //======================================================================= OnsetDetectionFunction::OnsetDetectionFunction(int hopSize_,int frameSize_) : onsetDetectionFunctionType(ComplexSpectralDifferenceHWR), windowType(HanningWindow) { // indicate that we have not initialised yet initialised = false; // set pi pi = 3.14159265358979; // initialise with arguments to constructor initialise(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow); } //======================================================================= OnsetDetectionFunction::OnsetDetectionFunction(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_) : onsetDetectionFunctionType(ComplexSpectralDifferenceHWR), windowType(HanningWindow) { // indicate that we have not initialised yet initialised = false; // set pi pi = 3.14159265358979; // initialise with arguments to constructor initialise(hopSize_,frameSize_,onsetDetectionFunctionType_,windowType_); } //======================================================================= OnsetDetectionFunction::~OnsetDetectionFunction() { if (initialised) { // destroy fft plan fftw_destroy_plan(p); fftw_free(complexIn); fftw_free(complexOut); } } //======================================================================= void OnsetDetectionFunction::initialise(int hopSize_,int frameSize_) { // use the already initialised onset detection function and window type and // pass the new frame and hop size to the main initialisation function initialise(hopSize_, frameSize_, onsetDetectionFunctionType, windowType); } //======================================================================= void OnsetDetectionFunction::initialise(int hopSize_,int frameSize_,int onsetDetectionFunctionType_,int windowType_) { if (initialised) // if we have already initialised FFT plan { // destroy fft plan fftw_destroy_plan(p); fftw_free(complexIn); fftw_free(complexOut); } hopSize = hopSize_; // set hopsize frameSize = frameSize_; // set framesize onsetDetectionFunctionType = onsetDetectionFunctionType_; // set detection function type windowType = windowType_; // set window type // initialise buffers frame.resize(frameSize); window.resize(frameSize); magSpec.resize(frameSize); prevMagSpec.resize(frameSize); phase.resize(frameSize); prevPhase.resize(frameSize); prevPhase2.resize(frameSize); // set the window to the specified type switch (windowType){ case RectangularWindow: calculateRectangularWindow(); // Rectangular window break; case HanningWindow: calculateHanningWindow(); // Hanning Window break; case HammingWindow: calclulateHammingWindow(); // Hamming Window break; case BlackmanWindow: calculateBlackmanWindow(); // Blackman Window break; case TukeyWindow: calculateTukeyWindow(); // Tukey Window break; default: calculateHanningWindow(); // DEFAULT: Hanning Window } // initialise previous magnitude spectrum to zero for (int i = 0;i < frameSize;i++) { prevMagSpec[i] = 0.0; prevPhase[i] = 0.0; prevPhase2[i] = 0.0; frame[i] = 0.0; } prevEnergySum = 0.0; // initialise previous energy sum value to zero /* Init fft */ complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * frameSize); // complex array to hold fft data complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * frameSize); // complex array to hold fft data p = fftw_plan_dft_1d(frameSize, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation initialised = true; } //======================================================================= void OnsetDetectionFunction :: setOnsetDetectionFunctionType(int onsetDetectionFunctionType_) { onsetDetectionFunctionType = onsetDetectionFunctionType_; // set detection function type } //======================================================================= double OnsetDetectionFunction :: calculateOnsetDetectionFunctionSample(double *buffer) { double odfSample; // shift audio samples back in frame by hop size for (int i = 0; i < (frameSize-hopSize);i++) { frame[i] = frame[i+hopSize]; } // add new samples to frame from input buffer int j = 0; for (int i = (frameSize-hopSize);i < frameSize;i++) { frame[i] = buffer[j]; j++; } switch (onsetDetectionFunctionType){ case EnergyEnvelope: { // calculate energy envelope detection function sample odfSample = energyEnvelope(); break; } case EnergyDifference: { // calculate half-wave rectified energy difference detection function sample odfSample = energyDifference(); break; } case SpectralDifference: { // calculate spectral difference detection function sample odfSample = spectralDifference(); break; } case SpectralDifferenceHWR: { // calculate spectral difference detection function sample (half wave rectified) odfSample = spectralDifferenceHWR(); break; } case PhaseDeviation: { // calculate phase deviation detection function sample (half wave rectified) odfSample = phaseDeviation(); break; } case ComplexSpectralDifference: { // calcualte complex spectral difference detection function sample odfSample = complexSpectralDifference(); break; } case ComplexSpectralDifferenceHWR: { // calcualte complex spectral difference detection function sample (half-wave rectified) odfSample = complexSpectralDifferenceHWR(); break; } case HighFrequencyContent: { // calculate high frequency content detection function sample odfSample = highFrequencyContent(); break; } case HighFrequencySpectralDifference: { // calculate high frequency spectral difference detection function sample odfSample = highFrequencySpectralDifference(); break; } case HighFrequencySpectralDifferenceHWR: { // calculate high frequency spectral difference detection function (half-wave rectified) odfSample = highFrequencySpectralDifferenceHWR(); break; } default: { odfSample = 1.0; } } return odfSample; } //======================================================================= void OnsetDetectionFunction :: performFFT() { int fsize2 = (frameSize/2); // window frame and copy to complex array, swapping the first and second half of the signal for (int i = 0;i < fsize2;i++) { complexIn[i][0] = frame[i+fsize2] * window[i+fsize2]; complexIn[i][1] = 0.0; complexIn[i+fsize2][0] = frame[i] * window[i]; complexIn[i+fsize2][1] = 0.0; } // perform the fft fftw_execute(p); } //////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////// Methods for Detection Functions ///////////////////////////////// //======================================================================= double OnsetDetectionFunction :: energyEnvelope() { double sum; sum = 0; // initialise sum // sum the squares of the samples for (int i = 0;i < frameSize;i++) { sum = sum + (frame[i]*frame[i]); } return sum; // return sum } //======================================================================= double OnsetDetectionFunction :: energyDifference() { double sum; double sample; sum = 0; // initialise sum // sum the squares of the samples for (int i = 0;i < frameSize;i++) { sum = sum + (frame[i]*frame[i]); } sample = sum - prevEnergySum; // sample is first order difference in energy prevEnergySum = sum; // store energy value for next calculation if (sample > 0) { return sample; // return difference } else { return 0; } } //======================================================================= double OnsetDetectionFunction :: spectralDifference() { double diff; double sum; // perform the FFT performFFT(); // compute first (N/2)+1 mag values for (int i = 0;i < (frameSize/2)+1;i++) { magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); } // mag spec symmetric above (N/2)+1 so copy previous values for (int i = (frameSize/2)+1;i < frameSize;i++) { magSpec[i] = magSpec[frameSize-i]; } sum = 0; // initialise sum to zero for (int i = 0;i < frameSize;i++) { // calculate difference diff = magSpec[i] - prevMagSpec[i]; // ensure all difference values are positive if (diff < 0) { diff = diff*-1; } // add difference to sum sum = sum+diff; // store magnitude spectrum bin for next detection function sample calculation prevMagSpec[i] = magSpec[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: spectralDifferenceHWR() { double diff; double sum; // perform the FFT performFFT(); // compute first (N/2)+1 mag values for (int i = 0;i < (frameSize/2)+1;i++) { magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); } // mag spec symmetric above (N/2)+1 so copy previous values for (int i = (frameSize/2)+1;i < frameSize;i++) { magSpec[i] = magSpec[frameSize-i]; } sum = 0; // initialise sum to zero for (int i = 0;i < frameSize;i++) { // calculate difference diff = magSpec[i] - prevMagSpec[i]; // only add up positive differences if (diff > 0) { // add difference to sum sum = sum+diff; } // store magnitude spectrum bin for next detection function sample calculation prevMagSpec[i] = magSpec[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: phaseDeviation() { double dev,pdev; double sum; // perform the FFT performFFT(); sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations for (int i = 0;i < frameSize;i++) { // calculate phase value phase[i] = atan2(complexOut[i][1],complexOut[i][0]); // calculate magnitude value magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); // if bin is not just a low energy bin then examine phase deviation if (magSpec[i] > 0.1) { dev = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; // phase deviation pdev = princarg(dev); // wrap into [-pi,pi] range // make all values positive if (pdev < 0) { pdev = pdev*-1; } // add to sum sum = sum + pdev; } // store values for next calculation prevPhase2[i] = prevPhase[i]; prevPhase[i] = phase[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: complexSpectralDifference() { double phaseDeviation; double sum; double csd; // perform the FFT performFFT(); sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations for (int i = 0;i < frameSize;i++) { // calculate phase value phase[i] = atan2(complexOut[i][1],complexOut[i][0]); // calculate magnitude value magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); // phase deviation phaseDeviation = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; // calculate complex spectral difference for the current spectral bin csd = sqrt(pow(magSpec[i], 2) + pow(prevMagSpec[i], 2) - 2 * magSpec[i] * prevMagSpec[i] * cos(phaseDeviation)); // add to sum sum = sum + csd; // store values for next calculation prevPhase2[i] = prevPhase[i]; prevPhase[i] = phase[i]; prevMagSpec[i] = magSpec[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: complexSpectralDifferenceHWR() { double phaseDeviation; double sum; double magnitudeDifference; double csd; // perform the FFT performFFT(); sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations for (int i = 0;i < frameSize;i++) { // calculate phase value phase[i] = atan2(complexOut[i][1],complexOut[i][0]); // calculate magnitude value magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); // phase deviation phaseDeviation = phase[i] - (2*prevPhase[i]) + prevPhase2[i]; // calculate magnitude difference (real part of Euclidean distance between complex frames) magnitudeDifference = magSpec[i] - prevMagSpec[i]; // if we have a positive change in magnitude, then include in sum, otherwise ignore (half-wave rectification) if (magnitudeDifference > 0) { // calculate complex spectral difference for the current spectral bin csd = sqrt(pow(magSpec[i], 2) + pow(prevMagSpec[i], 2) - 2 * magSpec[i] * prevMagSpec[i] * cos(phaseDeviation)); // add to sum sum = sum + csd; } // store values for next calculation prevPhase2[i] = prevPhase[i]; prevPhase[i] = phase[i]; prevMagSpec[i] = magSpec[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: highFrequencyContent() { double sum; // perform the FFT performFFT(); sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations for (int i = 0;i < frameSize;i++) { // calculate magnitude value magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); sum = sum + (magSpec[i]*((double) (i+1))); // store values for next calculation prevMagSpec[i] = magSpec[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: highFrequencySpectralDifference() { double sum; double mag_diff; // perform the FFT performFFT(); sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations for (int i = 0;i < frameSize;i++) { // calculate magnitude value magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); // calculate difference mag_diff = magSpec[i] - prevMagSpec[i]; if (mag_diff < 0) { mag_diff = -mag_diff; } sum = sum + (mag_diff*((double) (i+1))); // store values for next calculation prevMagSpec[i] = magSpec[i]; } return sum; } //======================================================================= double OnsetDetectionFunction :: highFrequencySpectralDifferenceHWR() { double sum; double mag_diff; // perform the FFT performFFT(); sum = 0; // initialise sum to zero // compute phase values from fft output and sum deviations for (int i = 0;i < frameSize;i++) { // calculate magnitude value magSpec[i] = sqrt(pow(complexOut[i][0],2) + pow(complexOut[i][1],2)); // calculate difference mag_diff = magSpec[i] - prevMagSpec[i]; if (mag_diff > 0) { sum = sum + (mag_diff*((double) (i+1))); } // store values for next calculation prevMagSpec[i] = magSpec[i]; } return sum; } //////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////// Methods to Calculate Windows //////////////////////////////////// //======================================================================= void OnsetDetectionFunction :: calculateHanningWindow() { double N; // variable to store framesize minus 1 N = (double) (frameSize-1); // framesize minus 1 // Hanning window calculation for (int n = 0;n < frameSize;n++) { window[n] = 0.5*(1-cos(2*pi*(n/N))); } } //======================================================================= void OnsetDetectionFunction :: calclulateHammingWindow() { double N; // variable to store framesize minus 1 double n_val; // double version of index 'n' N = (double) (frameSize-1); // framesize minus 1 n_val = 0; // Hamming window calculation for (int n = 0;n < frameSize;n++) { window[n] = 0.54 - (0.46*cos(2*pi*(n_val/N))); n_val = n_val+1; } } //======================================================================= void OnsetDetectionFunction :: calculateBlackmanWindow() { double N; // variable to store framesize minus 1 double n_val; // double version of index 'n' N = (double) (frameSize-1); // framesize minus 1 n_val = 0; // Blackman window calculation for (int n = 0;n < frameSize;n++) { window[n] = 0.42 - (0.5*cos(2*pi*(n_val/N))) + (0.08*cos(4*pi*(n_val/N))); n_val = n_val+1; } } //======================================================================= void OnsetDetectionFunction :: calculateTukeyWindow() { double N; // variable to store framesize minus 1 double n_val; // double version of index 'n' double alpha; // alpha [default value = 0.5]; alpha = 0.5; N = (double) (frameSize-1); // framesize minus 1 // Tukey window calculation n_val = (double) (-1*((frameSize/2)))+1; for (int n = 0;n < frameSize;n++) // left taper { if ((n_val >= 0) && (n_val <= (alpha*(N/2)))) { window[n] = 1.0; } else if ((n_val <= 0) && (n_val >= (-1*alpha*(N/2)))) { window[n] = 1.0; } else { window[n] = 0.5*(1+cos(pi*(((2*n_val)/(alpha*N))-1))); } n_val = n_val+1; } } //======================================================================= void OnsetDetectionFunction :: calculateRectangularWindow() { // Rectangular window calculation for (int n = 0;n < frameSize;n++) { window[n] = 1.0; } } //////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Other Handy Methods ////////////////////////////////////////// //======================================================================= double OnsetDetectionFunction :: princarg(double phaseVal) { // if phase value is less than or equal to -pi then add 2*pi while (phaseVal <= (-pi)) { phaseVal = phaseVal + (2*pi); } // if phase value is larger than pi, then subtract 2*pi while (phaseVal > pi) { phaseVal = phaseVal - (2*pi); } return phaseVal; }