Mercurial > hg > btrack
diff src/BTrack.cpp @ 36:5bd9ae503dcf master 1.0.0
flow: Merged <release> '1.0.0' to <master> ('master').
author | Adam Stark <adamstark.uk@gmail.com> |
---|---|
date | Tue, 08 Jul 2014 12:32:27 +0100 |
parents | bddd59087c36 |
children |
line wrap: on
line diff
--- a/src/BTrack.cpp Tue Jan 21 01:45:36 2014 +0000 +++ b/src/BTrack.cpp Tue Jul 08 12:32:27 2014 +0100 @@ -19,53 +19,84 @@ */ //======================================================================= -#include <iostream> #include <cmath> +#include <algorithm> #include "BTrack.h" #include "samplerate.h" -using namespace std; +//======================================================================= +BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) +{ + initialise(512, 1024); +} +//======================================================================= +BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) +{ + initialise(hopSize_, 2*hopSize_); +} +//======================================================================= +BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) +{ + initialise(hopSize_, frameSize_); +} -//------------------------------------------------------------------------------- -// Constructor -BTrack :: BTrack() -{ - float rayparam = 43; - float pi = 3.14159265; +//======================================================================= +double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) +{ + double hop = (double) hopSize; + double samplingFrequency = (double) fs; + double frameNum = (double) frameNumber; + + return ((hop / samplingFrequency) * frameNum); +} + +//======================================================================= +double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) +{ + long frameNum = (long) frameNumber; + + return getBeatTimeInSeconds(frameNum, hopSize, fs); +} + + + +//======================================================================= +void BTrack::initialise(int hopSize_, int frameSize_) +{ + double rayparam = 43; + double pi = 3.14159265; // initialise parameters tightness = 5; alpha = 0.9; tempo = 120; - est_tempo = 120; - p_fact = 60.*44100./512.; + estimatedTempo = 120.0; + tempoToLagFactor = 60.*44100./512.; m0 = 10; - beat = -1; + beatCounter = -1; - playbeat = 0; + beatDueInFrame = false; - - - + // create rayleigh weighting vector for (int n = 0;n < 128;n++) { - wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2))); + weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); } // initialise prev_delta for (int i = 0;i < 41;i++) { - prev_delta[i] = 1; + prevDelta[i] = 1; } - float t_mu = 41/2; - float m_sig; - float x; + double t_mu = 41/2; + double m_sig; + double x; // create tempo transition matrix m_sig = 41/8; for (int i = 0;i < 41;i++) @@ -74,88 +105,135 @@ { x = j+1; t_mu = i+1; - t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); + tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); } - } + } // tempo is not fixed - tempofix = 0; + tempoFixed = false; + + // initialise latest cumulative score value + // in case it is requested before any processing takes place + latestCumulativeScoreValue = 0; + + // initialise algorithm given the hopsize + setHopSize(hopSize_); } -//------------------------------------------------------------------------------- -// Destructor -BTrack :: ~BTrack() +//======================================================================= +void BTrack::setHopSize(int hopSize_) { + hopSize = hopSize_; + onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size -} + beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); -//------------------------------------------------------------------------------- -// Initialise with frame size and set all frame sizes accordingly -void BTrack :: initialise(int fsize) -{ - framesize = fsize; - dfbuffer_size = (512*512)/fsize; // calculate df buffer size - - bperiod = round(60/((((float) fsize)/44100)*tempo)); - - dfbuffer = new float[dfbuffer_size]; // create df_buffer - cumscore = new float[dfbuffer_size]; // create cumscore - + // set size of onset detection function buffer + onsetDF.resize(onsetDFBufferSize); + + // set size of cumulative score buffer + cumulativeScore.resize(onsetDFBufferSize); // initialise df_buffer to zeros - for (int i = 0;i < dfbuffer_size;i++) + for (int i = 0;i < onsetDFBufferSize;i++) { - dfbuffer[i] = 0; - cumscore[i] = 0; + onsetDF[i] = 0; + cumulativeScore[i] = 0; - if ((i % ((int) round(bperiod))) == 0) + if ((i % ((int) round(beatPeriod))) == 0) { - dfbuffer[i] = 1; + onsetDF[i] = 1; } } } -//------------------------------------------------------------------------------- -// Add new sample to buffer and apply beat tracking -void BTrack :: process(float df_sample) -{ +//======================================================================= +void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_) +{ + // update the onset detection function object + odf.initialise(hopSize_, frameSize_); + + // update the hop size being used by the beat tracker + setHopSize(hopSize_); +} + +//======================================================================= +bool BTrack::beatDueInCurrentFrame() +{ + return beatDueInFrame; +} + +//======================================================================= +int BTrack::getHopSize() +{ + return hopSize; +} + +//======================================================================= +double BTrack::getLatestCumulativeScoreValue() +{ + return latestCumulativeScoreValue; +} + +//======================================================================= +void BTrack::processAudioFrame(double *frame) +{ + // calculate the onset detection function sample for the frame + double sample = odf.calculateOnsetDetectionFunctionSample(frame); + + + + // process the new onset detection function sample in the beat tracking algorithm + processOnsetDetectionFunctionSample(sample); +} + +//======================================================================= +void BTrack::processOnsetDetectionFunctionSample(double newSample) +{ + // we need to ensure that the onset + // detection function sample is positive + newSample = fabs(newSample); + + // add a tiny constant to the sample to stop it from ever going + // to zero. this is to avoid problems further down the line + newSample = newSample + 0.0001; + m0--; - beat--; - playbeat = 0; + beatCounter--; + beatDueInFrame = false; // move all samples back one step - for (int i=0;i < (dfbuffer_size-1);i++) + for (int i=0;i < (onsetDFBufferSize-1);i++) { - dfbuffer[i] = dfbuffer[i+1]; + onsetDF[i] = onsetDF[i+1]; } // add new sample at the end - dfbuffer[dfbuffer_size-1] = df_sample; + onsetDF[onsetDFBufferSize-1] = newSample; // update cumulative score - updatecumscore(df_sample); + updateCumulativeScore(newSample); // if we are halfway between beats if (m0 == 0) { - predictbeat(); + predictBeat(); } // if we are at a beat - if (beat == 0) + if (beatCounter == 0) { - playbeat = 1; // indicate a beat should be output + beatDueInFrame = true; // indicate a beat should be output // recalculate the tempo - dfconvert(); - calcTempo(); + resampleOnsetDetectionFunction(); + calculateTempo(); } } -//------------------------------------------------------------------------------- -// Set the tempo of the beat tracker -void BTrack :: settempo(float tempo) +//======================================================================= +void BTrack::setTempo(double tempo) { /////////// TEMPO INDICATION RESET ////////////////// @@ -177,31 +255,31 @@ // now set previous tempo observations to zero for (int i=0;i < 41;i++) { - prev_delta[i] = 0; + prevDelta[i] = 0; } // set desired tempo index to 1 - prev_delta[tempo_index] = 1; + prevDelta[tempo_index] = 1; /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// // calculate new beat period - int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo)); + int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo)); int bcounter = 1; // initialise df_buffer to zeros - for (int i = (dfbuffer_size-1);i >= 0;i--) + for (int i = (onsetDFBufferSize-1);i >= 0;i--) { if (bcounter == 1) { - cumscore[i] = 150; - dfbuffer[i] = 150; + cumulativeScore[i] = 150; + onsetDF[i] = 150; } else { - cumscore[i] = 10; - dfbuffer[i] = 10; + cumulativeScore[i] = 10; + onsetDF[i] = 10; } bcounter++; @@ -215,16 +293,14 @@ /////////// INDICATE THAT THIS IS A BEAT ////////////////// // beat is now - beat = 0; + beatCounter = 0; // offbeat is half of new beat period away - m0 = (int) round(((float) new_bperiod)/2); + m0 = (int) round(((double) new_bperiod)/2); } - -//------------------------------------------------------------------------------- -// fix tempo to roughly around some value -void BTrack :: fixtempo(float tempo) +//======================================================================= +void BTrack::fixTempo(double tempo) { // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) @@ -243,39 +319,43 @@ // now set previous fixed previous tempo observation values to zero for (int i=0;i < 41;i++) { - prev_delta_fix[i] = 0; + prevDeltaFixed[i] = 0; } // set desired tempo index to 1 - prev_delta_fix[tempo_index] = 1; + prevDeltaFixed[tempo_index] = 1; // set the tempo fix flag - tempofix = 1; + tempoFixed = true; } -//------------------------------------------------------------------------------- -// do not fix the tempo anymore -void BTrack :: unfixtempo() +//======================================================================= +void BTrack::doNotFixTempo() { // set the tempo fix flag - tempofix = 0; + tempoFixed = false; } -//------------------------------------------------------------------------------- -// Convert detection function from N samples to 512 -void BTrack :: dfconvert() +//======================================================================= +void BTrack::resampleOnsetDetectionFunction() { float output[512]; + float input[onsetDFBufferSize]; + + for (int i = 0;i < onsetDFBufferSize;i++) + { + input[i] = (float) onsetDF[i]; + } - double src_ratio = 512.0/((double) dfbuffer_size); - int BUFFER_LEN = dfbuffer_size; + double src_ratio = 512.0/((double) onsetDFBufferSize); + int BUFFER_LEN = onsetDFBufferSize; int output_len; SRC_DATA src_data ; //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; output_len = 512; - src_data.data_in = dfbuffer; + src_data.data_in = input; src_data.input_frames = BUFFER_LEN; src_data.src_ratio = src_ratio; @@ -287,51 +367,50 @@ for (int i = 0;i < output_len;i++) { - df512[i] = src_data.data_out[i]; + resampledOnsetDF[i] = (double) src_data.data_out[i]; } } -//------------------------------------------------------------------------------- -// To calculate the current tempo expressed as the beat period in detection function samples -void BTrack :: calcTempo() +//======================================================================= +void BTrack::calculateTempo() { // adaptive threshold on input - adapt_thresh(df512,512); + adaptiveThreshold(resampledOnsetDF,512); // calculate auto-correlation function of detection function - acf_bal(df512); + calculateBalancedACF(resampledOnsetDF); // calculate output of comb filterbank - getrcfoutput(); + calculateOutputOfCombFilterBank(); // adaptive threshold on rcf - adapt_thresh(rcf,128); + adaptiveThreshold(combFilterBankOutput,128); int t_index; int t_index2; - // calculate tempo observation vector from bperiod observation vector + // calculate tempo observation vector from beat period observation vector for (int i = 0;i < 41;i++) { - t_index = (int) round(p_fact / ((float) ((2*i)+80))); - t_index2 = (int) round(p_fact / ((float) ((4*i)+160))); + t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80))); + t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160))); - t_obs[i] = rcf[t_index-1] + rcf[t_index2-1]; + tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1]; } - float maxval; - float maxind; - float curval; + double maxval; + double maxind; + double curval; // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function - if (tempofix == 1) + if (tempoFixed) { for (int k = 0;k < 41;k++) { - prev_delta[k] = prev_delta_fix[k]; + prevDelta[k] = prevDeltaFixed[k]; } } @@ -340,7 +419,7 @@ maxval = -1; for (int i = 0;i < 41;i++) { - curval = prev_delta[i]*t_tmat[i][j]; + curval = prevDelta[i]*tempoTransitionMatrix[i][j]; if (curval > maxval) { @@ -348,11 +427,11 @@ } } - delta[j] = maxval*t_obs[j]; + delta[j] = maxval*tempoObservationVector[j]; } - normalise(delta,41); + normaliseArray(delta,41); maxind = -1; maxval = -1; @@ -365,49 +444,45 @@ maxind = j; } - prev_delta[j] = delta[j]; + prevDelta[j] = delta[j]; } - bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize))); + beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); - if (bperiod > 0) + if (beatPeriod > 0) { - est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod); + estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); } - - //cout << bperiod << endl; } -//------------------------------------------------------------------------------- -// calculates an adaptive threshold which is used to remove low level energy from detection function and emphasise peaks -void BTrack :: adapt_thresh(float x[],int N) +//======================================================================= +void BTrack::adaptiveThreshold(double *x,int N) { - //int N = 512; // length of df int i = 0; int k,t = 0; - float x_thresh[N]; + double x_thresh[N]; int p_post = 7; int p_pre = 8; - t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays + t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays // find threshold for first 't' samples, where a full average cannot be computed yet for (i = 0;i <= t;i++) { - k = min((i+p_pre),N); - x_thresh[i] = mean_array(x,1,k); + k = std::min((i+p_pre),N); + x_thresh[i] = calculateMeanOfArray(x,1,k); } // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] for (i = t+1;i < N-p_post;i++) { - x_thresh[i] = mean_array(x,i-p_pre,i+p_post); + x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); } // for last few samples calculate threshold, again, not enough samples to do as above for (i = N-p_post;i < N;i++) { - k = max((i-p_post),1); - x_thresh[i] = mean_array(x,k,N); + k = std::max((i-p_post),1); + x_thresh[i] = calculateMeanOfArray(x,k,N); } // subtract the threshold from the detection function and check that it is not less than 0 @@ -421,15 +496,14 @@ } } -//------------------------------------------------------------------------------- -// returns the output of the comb filter -void BTrack :: getrcfoutput() +//======================================================================= +void BTrack::calculateOutputOfCombFilterBank() { int numelem; for (int i = 0;i < 128;i++) { - rcf[i] = 0; + combFilterBankOutput[i] = 0; } numelem = 4; @@ -440,18 +514,17 @@ { for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements { - rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row + combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row } } } } -//------------------------------------------------------------------------------- -// calculates the balanced autocorrelation of the smoothed detection function -void BTrack :: acf_bal(float df_thresh[]) +//======================================================================= +void BTrack::calculateBalancedACF(double *onsetDetectionFunction) { int l, n = 0; - float sum, tmp; + double sum, tmp; // for l lags from 0-511 for (l = 0;l < 512;l++) @@ -461,7 +534,7 @@ // for n samples from 0 - (512-lag) for (n = 0;n < (512-l);n++) { - tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l) + tmp = onsetDetectionFunction[n] * onsetDetectionFunction[n+l]; // multiply current sample n by sample (n+l) sum = sum + tmp; // add to sum } @@ -469,18 +542,16 @@ } } - -//------------------------------------------------------------------------------- -// calculates the mean of values in an array from index locations [start,end] -float BTrack :: mean_array(float array[],int start,int end) +//======================================================================= +double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex) { int i; double sum = 0; - int length = end - start; + int length = endIndex - startIndex; // find sum - for (i = start;i < end;i++) + for (i = startIndex;i < endIndex;i++) { sum = sum + array[i]; } @@ -495,9 +566,8 @@ } } -//------------------------------------------------------------------------------- -// normalise the array -void BTrack :: normalise(float array[],int N) +//======================================================================= +void BTrack::normaliseArray(double *array,int N) { double sum = 0; @@ -518,38 +588,25 @@ } } -//------------------------------------------------------------------------------- -// plot contents of detection function buffer -void BTrack :: plotdfbuffer() -{ - for (int i=0;i < dfbuffer_size;i++) - { - cout << dfbuffer[i] << endl; - } - - cout << "--------------------------------" << endl; -} - -//------------------------------------------------------------------------------- -// update the cumulative score -void BTrack :: updatecumscore(float df_sample) +//======================================================================= +void BTrack::updateCumulativeScore(double odfSample) { int start, end, winsize; - float max; + double max; - start = dfbuffer_size - round(2*bperiod); - end = dfbuffer_size - round(bperiod/2); + start = onsetDFBufferSize - round(2*beatPeriod); + end = onsetDFBufferSize - round(beatPeriod/2); winsize = end-start+1; - float w1[winsize]; - float v = -2*bperiod; - float wcumscore; + double w1[winsize]; + double v = -2*beatPeriod; + double wcumscore; // create window for (int i = 0;i < winsize;i++) { - w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2); + w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); v = v+1; } @@ -558,7 +615,7 @@ int n = 0; for (int i=start;i <= end;i++) { - wcumscore = cumscore[i]*w1[n]; + wcumscore = cumulativeScore[i]*w1[n]; if (wcumscore > max) { @@ -569,70 +626,67 @@ // shift cumulative score back one - for (int i = 0;i < (dfbuffer_size-1);i++) + for (int i = 0;i < (onsetDFBufferSize-1);i++) { - cumscore[i] = cumscore[i+1]; + cumulativeScore[i] = cumulativeScore[i+1]; } // add new value to cumulative score - cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max); + cumulativeScore[onsetDFBufferSize-1] = ((1-alpha)*odfSample) + (alpha*max); - cscoreval = cumscore[dfbuffer_size-1]; - - //cout << cumscore[dfbuffer_size-1] << endl; - + latestCumulativeScoreValue = cumulativeScore[onsetDFBufferSize-1]; + } -//------------------------------------------------------------------------------- -// plot contents of detection function buffer -void BTrack :: predictbeat() +//======================================================================= +void BTrack::predictBeat() { - int winsize = (int) bperiod; - float fcumscore[dfbuffer_size + winsize]; - float w2[winsize]; + int windowSize = (int) beatPeriod; + double futureCumulativeScore[onsetDFBufferSize + windowSize]; + double w2[windowSize]; // copy cumscore to first part of fcumscore - for (int i = 0;i < dfbuffer_size;i++) + for (int i = 0;i < onsetDFBufferSize;i++) { - fcumscore[i] = cumscore[i]; + futureCumulativeScore[i] = cumulativeScore[i]; } // create future window - float v = 1; - for (int i = 0;i < winsize;i++) + double v = 1; + for (int i = 0;i < windowSize;i++) { - w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2))); + w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); v++; } // create past window - v = -2*bperiod; - int start = dfbuffer_size - round(2*bperiod); - int end = dfbuffer_size - round(bperiod/2); + v = -2*beatPeriod; + int start = onsetDFBufferSize - round(2*beatPeriod); + int end = onsetDFBufferSize - round(beatPeriod/2); int pastwinsize = end-start+1; - float w1[pastwinsize]; + double w1[pastwinsize]; for (int i = 0;i < pastwinsize;i++) { - w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2); + w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); v = v+1; } // calculate future cumulative score - float max; + double max; int n; - float wcumscore; - for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) + double wcumscore; + for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) { - start = i - round(2*bperiod); - end = i - round(bperiod/2); + start = i - round(2*beatPeriod); + end = i - round(beatPeriod/2); max = 0; n = 0; for (int k=start;k <= end;k++) { - wcumscore = fcumscore[k]*w1[n]; + wcumscore = futureCumulativeScore[k]*w1[n]; if (wcumscore > max) { @@ -641,7 +695,7 @@ n++; } - fcumscore[i] = max; + futureCumulativeScore[i] = max; } @@ -649,25 +703,21 @@ max = 0; n = 0; - for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) + for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++) { - wcumscore = fcumscore[i]*w2[n]; + wcumscore = futureCumulativeScore[i]*w2[n]; if (wcumscore > max) { max = wcumscore; - beat = n; + beatCounter = n; } n++; } - - // set beat - beat = beat; - // set next prediction time - m0 = beat+round(bperiod/2); + m0 = beatCounter+round(beatPeriod/2); } \ No newline at end of file