comparison BeatRootProcessor.h @ 1:791398eaf639

* Some half-digested Java/C++ mishmash
author Chris Cannam
date Mon, 24 Jan 2011 16:44:27 +0000
parents
children 7d4e6b1ff3d1
comparison
equal deleted inserted replaced
0:886f11e41417 1:791398eaf639
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 /*
4 Vamp feature extraction plugin for the BeatRoot beat tracker.
5
6 Centre for Digital Music, Queen Mary, University of London.
7 This file copyright 2011 Simon Dixon, Chris Cannam and QMUL.
8
9 This program is free software; you can redistribute it and/or
10 modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version. See the file
13 COPYING included with this distribution for more information.
14 */
15
16 #ifndef _BEATROOT_PROCESSOR_H_
17 #define _BEATROOT_PROCESSOR_H_
18
19 class BeatRootProcessor
20 {
21 protected:
22 /** Sample rate of audio */
23 float sampleRate;
24
25 /** Spacing of audio frames (determines the amount of overlap or
26 * skip between frames). This value is expressed in
27 * seconds. (Default = 0.020s) */
28 double hopTime;
29
30 /** The approximate size of an FFT frame in seconds. (Default =
31 * 0.04644s). The value is adjusted so that <code>fftSize</code>
32 * is always power of 2. */
33 double fftTime;
34
35 /** Spacing of audio frames in samples (see <code>hopTime</code>) */
36 int hopSize;
37
38 /** The size of an FFT frame in samples (see <code>fftTime</code>) */
39 int fftSize;
40
41 /** The number of overlapping frames of audio data which have been read. */
42 int frameCount;
43
44 /** RMS amplitude of the current frame. */
45 double frameRMS;
46
47 /** Long term average frame energy (in frequency domain representation). */
48 double ltAverage;
49
50 /** Spectral flux onset detection function, indexed by frame. */
51 vector<int> spectralFlux;
52
53 /** A mapping function for mapping FFT bins to final frequency bins.
54 * The mapping is linear (1-1) until the resolution reaches 2 points per
55 * semitone, then logarithmic with a semitone resolution. e.g. for
56 * 44.1kHz sampling rate and fftSize of 2048 (46ms), bin spacing is
57 * 21.5Hz, which is mapped linearly for bins 0-34 (0 to 732Hz), and
58 * logarithmically for the remaining bins (midi notes 79 to 127, bins 35 to
59 * 83), where all energy above note 127 is mapped into the final bin. */
60 vector<int> freqMap;
61
62 /** The number of entries in <code>freqMap</code>. Note that the length of
63 * the array is greater, because its size is not known at creation time. */
64 int freqMapSize;
65
66 /** The magnitude spectrum of the most recent frame. Used for
67 * calculating the spectral flux. */
68 vector<double> prevFrame;
69
70 /** The magnitude spectrum of the current frame. */
71 vector<double> newFrame;
72
73 /** The magnitude spectra of all frames, used for plotting the spectrogram. */
74 vector<vector<double> > frames; //!!! do we need this? much cheaper to lose it if we don't
75
76 /** The RMS energy of all frames. */
77 vector<double> energy; //!!! unused in beat tracking?
78
79 /** The estimated onset times from peak-picking the onset
80 * detection function(s). */
81 vector<double> onsets;
82
83 /** The estimated onset times and their saliences. */
84 //!!!EventList onsetList;
85 vector<double> onsetList; //!!! corresponding to keyDown member of events in list
86
87 /** Total number of audio frames if known, or -1 for live or compressed input. */
88 int totalFrames;
89
90 /** Flag for enabling or disabling debugging output */
91 static bool debug = false;
92
93 /** Flag for suppressing all standard output messages except results. */
94 static bool silent = true;
95
96 /** RMS frame energy below this value results in the frame being
97 * set to zero, so that normalisation does not have undesired
98 * side-effects. */
99 static double silenceThreshold = 0.0004; //!!!??? energy of what? should not be static?
100
101 /** For dynamic range compression, this value is added to the log
102 * magnitude in each frequency bin and any remaining negative
103 * values are then set to zero.
104 */
105 static double rangeThreshold = 10; //!!! sim
106
107 /** Determines method of normalisation. Values can be:<ul>
108 * <li>0: no normalisation</li>
109 * <li>1: normalisation by current frame energy</li>
110 * <li>2: normalisation by exponential average of frame energy</li>
111 * </ul>
112 */
113 static int normaliseMode = 2;
114
115 /** Ratio between rate of sampling the signal energy (for the
116 * amplitude envelope) and the hop size */
117 static int energyOversampleFactor = 2; //!!! not used?
118
119 public:
120
121 /** Constructor: note that streams are not opened until the input
122 * file is set (see <code>setInputFile()</code>). */
123 AudioProcessor() {
124 cbIndex = 0;
125 frameRMS = 0;
126 ltAverage = 0;
127 frameCount = 0;
128 hopSize = 0;
129 fftSize = 0;
130 hopTime = 0.010; // DEFAULT, overridden with -h
131 fftTime = 0.04644; // DEFAULT, overridden with -f
132 progressCallback = null;
133 stdIn = new BufferedReader(new InputStreamReader(System.in));
134 if (doOnsetPlot)
135 plot = new Plot();
136 } // constructor
137
138 /** For debugging, outputs information about the AudioProcessor to
139 * standard error.
140 */
141 public void print() {
142 System.err.println(this);
143 } // print()
144
145 /** For interactive pause - wait for user to hit Enter */
146 public String readLine() {
147 try { return stdIn.readLine(); } catch (Exception e) { return null; }
148 } // readLine()
149
150 /** Gives some basic information about the audio being processed. */
151 public String toString() {
152 return "AudioProcessor\n" +
153 String.format("\tFile: %s (%3.1f kHz, %1d channels)\n",
154 audioFileName, sampleRate/1000, channels) +
155 String.format("\tHop / FFT sizes: %5.3f / %5.3f",
156 hopTime, hopTime * fftSize / hopSize);
157 } // toString()
158
159 /** Adds a link to the GUI component which shows the progress of matching.
160 * @param c the AudioProcessor representing the other performance
161 */
162 public void setProgressCallback(ProgressIndicator c) {
163 progressCallback = c;
164 } // setProgressCallback()
165
166 /** Sets up the streams and buffers for live audio input (CD quality).
167 * If any Exception is thrown within this method, it is caught, and any
168 * opened streams are closed, and <code>pcmInputStream</code> is set to
169 * <code>null</code>, indicating that the method did not complete
170 * successfully.
171 */
172 public void setLiveInput() {
173 try {
174 channels = 2;
175 sampleRate = 44100;
176 AudioFormat desiredFormat = new AudioFormat(
177 AudioFormat.Encoding.PCM_SIGNED, sampleRate, 16,
178 channels, channels * 2, sampleRate, false);
179 TargetDataLine tdl = AudioSystem.getTargetDataLine(desiredFormat);
180 tdl.open(desiredFormat, liveInputBufferSize);
181 pcmInputStream = new AudioInputStream(tdl);
182 audioFormat = pcmInputStream.getFormat();
183 init();
184 tdl.start();
185 } catch (Exception e) {
186 e.printStackTrace();
187 closeStreams(); // make sure it exits in a consistent state
188 }
189 } // setLiveInput()
190
191 /** Sets up the streams and buffers for audio file input.
192 * If any Exception is thrown within this method, it is caught, and any
193 * opened streams are closed, and <code>pcmInputStream</code> is set to
194 * <code>null</code>, indicating that the method did not complete
195 * successfully.
196 * @param fileName The path name of the input audio file.
197 */
198 public void setInputFile(String fileName) {
199 closeStreams(); // release previously allocated resources
200 audioFileName = fileName;
201 try {
202 if (audioFileName == null)
203 throw new Exception("No input file specified");
204 File audioFile = new File(audioFileName);
205 if (!audioFile.isFile())
206 throw new FileNotFoundException(
207 "Requested file does not exist: " + audioFileName);
208 rawInputStream = AudioSystem.getAudioInputStream(audioFile);
209 audioFormat = rawInputStream.getFormat();
210 channels = audioFormat.getChannels();
211 sampleRate = audioFormat.getSampleRate();
212 pcmInputStream = rawInputStream;
213 if ((audioFormat.getEncoding()!=AudioFormat.Encoding.PCM_SIGNED) ||
214 (audioFormat.getFrameSize() != channels * 2) ||
215 audioFormat.isBigEndian()) {
216 AudioFormat desiredFormat = new AudioFormat(
217 AudioFormat.Encoding.PCM_SIGNED, sampleRate, 16,
218 channels, channels * 2, sampleRate, false);
219 pcmInputStream = AudioSystem.getAudioInputStream(desiredFormat,
220 rawInputStream);
221 audioFormat = desiredFormat;
222 }
223 init();
224 } catch (Exception e) {
225 e.printStackTrace();
226 closeStreams(); // make sure it exits in a consistent state
227 }
228 } // setInputFile()
229
230 /** Allocates memory for arrays, based on parameter settings */
231 protected void init() {
232 hopSize = (int) Math.round(sampleRate * hopTime);
233 fftSize = (int) Math.round(Math.pow(2,
234 Math.round( Math.log(fftTime * sampleRate) / Math.log(2))));
235 makeFreqMap(fftSize, sampleRate);
236 int buffSize = hopSize * channels * 2;
237 if ((inputBuffer == null) || (inputBuffer.length != buffSize))
238 inputBuffer = new byte[buffSize];
239 if ((circBuffer == null) || (circBuffer.length != fftSize)) {
240 circBuffer = new double[fftSize];
241 reBuffer = new double[fftSize];
242 imBuffer = new double[fftSize];
243 prevPhase = new double[fftSize];
244 prevPrevPhase = new double[fftSize];
245 prevFrame = new double[fftSize];
246 window = FFT.makeWindow(FFT.HAMMING, fftSize, fftSize);
247 for (int i=0; i < fftSize; i++)
248 window[i] *= Math.sqrt(fftSize);
249 }
250 if (pcmInputStream == rawInputStream)
251 totalFrames = (int)(pcmInputStream.getFrameLength() / hopSize);
252 else
253 totalFrames = (int) (MAX_LENGTH / hopTime);
254 if ((newFrame == null) || (newFrame.length != freqMapSize)) {
255 newFrame = new double[freqMapSize];
256 frames = new double[totalFrames][freqMapSize];
257 } else if (frames.length != totalFrames)
258 frames = new double[totalFrames][freqMapSize];
259 energy = new double[totalFrames*energyOversampleFactor];
260 phaseDeviation = new double[totalFrames];
261 spectralFlux = new double[totalFrames];
262 frameCount = 0;
263 cbIndex = 0;
264 frameRMS = 0;
265 ltAverage = 0;
266 progressCallback = null;
267 } // init()
268
269 /** Closes the input stream(s) associated with this object. */
270 public void closeStreams() {
271 if (pcmInputStream != null) {
272 try {
273 pcmInputStream.close();
274 if (pcmInputStream != rawInputStream)
275 rawInputStream.close();
276 if (audioOut != null) {
277 audioOut.drain();
278 audioOut.close();
279 }
280 } catch (Exception e) {}
281 pcmInputStream = null;
282 audioOut = null;
283 }
284 } // closeStreams()
285
286 /** Creates a map of FFT frequency bins to comparison bins.
287 * Where the spacing of FFT bins is less than 0.5 semitones, the mapping is
288 * one to one. Where the spacing is greater than 0.5 semitones, the FFT
289 * energy is mapped into semitone-wide bins. No scaling is performed; that
290 * is the energy is summed into the comparison bins. See also
291 * processFrame()
292 */
293 protected void makeFreqMap(int fftSize, float sampleRate) {
294 freqMap = new int[fftSize/2+1];
295 double binWidth = sampleRate / fftSize;
296 int crossoverBin = (int)(2 / (Math.pow(2, 1/12.0) - 1));
297 int crossoverMidi = (int)Math.round(Math.log(crossoverBin*binWidth/440)/
298 Math.log(2) * 12 + 69);
299 // freq = 440 * Math.pow(2, (midi-69)/12.0) / binWidth;
300 int i = 0;
301 while (i <= crossoverBin)
302 freqMap[i++] = i;
303 while (i <= fftSize/2) {
304 double midi = Math.log(i*binWidth/440) / Math.log(2) * 12 + 69;
305 if (midi > 127)
306 midi = 127;
307 freqMap[i++] = crossoverBin + (int)Math.round(midi) - crossoverMidi;
308 }
309 freqMapSize = freqMap[i-1] + 1;
310 } // makeFreqMap()
311
312 /** Calculates the weighted phase deviation onset detection function.
313 * Not used.
314 * TODO: Test the change to WPD fn */
315 protected void weightedPhaseDeviation() {
316 if (frameCount < 2)
317 phaseDeviation[frameCount] = 0;
318 else {
319 for (int i = 0; i < fftSize; i++) {
320 double pd = imBuffer[i] - 2 * prevPhase[i] + prevPrevPhase[i];
321 double pd1 = Math.abs(Math.IEEEremainder(pd, 2 * Math.PI));
322 phaseDeviation[frameCount] += pd1 * reBuffer[i];
323 // System.err.printf("%7.3f %7.3f\n", pd/Math.PI, pd1/Math.PI);
324 }
325 }
326 phaseDeviation[frameCount] /= fftSize * Math.PI;
327 double[] tmp = prevPrevPhase;
328 prevPrevPhase = prevPhase;
329 prevPhase = imBuffer;
330 imBuffer = tmp;
331 } // weightedPhaseDeviation()
332
333 /** Reads a frame of input data, averages the channels to mono, scales
334 * to a maximum possible absolute value of 1, and stores the audio data
335 * in a circular input buffer.
336 * @return true if a frame (or part of a frame, if it is the final frame)
337 * is read. If a complete frame cannot be read, the InputStream is set
338 * to null.
339 */
340 public boolean getFrame() {
341 if (pcmInputStream == null)
342 return false;
343 try {
344 int bytesRead = (int) pcmInputStream.read(inputBuffer);
345 if ((audioOut != null) && (bytesRead > 0))
346 if (audioOut.write(inputBuffer, 0, bytesRead) != bytesRead)
347 System.err.println("Error writing to audio device");
348 if (bytesRead < inputBuffer.length) {
349 if (!silent)
350 System.err.println("End of input: " + audioFileName);
351 closeStreams();
352 return false;
353 }
354 } catch (IOException e) {
355 e.printStackTrace();
356 closeStreams();
357 return false;
358 }
359 frameRMS = 0;
360 double sample;
361 switch(channels) {
362 case 1:
363 for (int i = 0; i < inputBuffer.length; i += 2) {
364 sample = ((inputBuffer[i+1]<<8) |
365 (inputBuffer[i]&0xff)) / 32768.0;
366 frameRMS += sample * sample;
367 circBuffer[cbIndex++] = sample;
368 if (cbIndex == fftSize)
369 cbIndex = 0;
370 }
371 break;
372 case 2: // saves ~0.1% of RT (total input overhead ~0.4%) :)
373 for (int i = 0; i < inputBuffer.length; i += 4) {
374 sample = (((inputBuffer[i+1]<<8) | (inputBuffer[i]&0xff)) +
375 ((inputBuffer[i+3]<<8) | (inputBuffer[i+2]&0xff)))
376 / 65536.0;
377 frameRMS += sample * sample;
378 circBuffer[cbIndex++] = sample;
379 if (cbIndex == fftSize)
380 cbIndex = 0;
381 }
382 break;
383 default:
384 for (int i = 0; i < inputBuffer.length; ) {
385 sample = 0;
386 for (int j = 0; j < channels; j++, i+=2)
387 sample += (inputBuffer[i+1]<<8) | (inputBuffer[i]&0xff);
388 sample /= 32768.0 * channels;
389 frameRMS += sample * sample;
390 circBuffer[cbIndex++] = sample;
391 if (cbIndex == fftSize)
392 cbIndex = 0;
393 }
394 }
395 frameRMS = Math.sqrt(frameRMS / inputBuffer.length * 2 * channels);
396 return true;
397 } // getFrame()
398
399 /** Processes a frame of audio data by first computing the STFT with a
400 * Hamming window, then mapping the frequency bins into a part-linear
401 * part-logarithmic array, then computing the spectral flux
402 * then (optionally) normalising and calculating onsets.
403 */
404 protected void processFrame() {
405 if (getFrame()) {
406 for (int i = 0; i < fftSize; i++) {
407 reBuffer[i] = window[i] * circBuffer[cbIndex];
408 if (++cbIndex == fftSize)
409 cbIndex = 0;
410 }
411 Arrays.fill(imBuffer, 0);
412 FFT.magnitudePhaseFFT(reBuffer, imBuffer);
413 Arrays.fill(newFrame, 0);
414 double flux = 0;
415 for (int i = 0; i <= fftSize/2; i++) {
416 if (reBuffer[i] > prevFrame[i])
417 flux += reBuffer[i] - prevFrame[i];
418 newFrame[freqMap[i]] += reBuffer[i];
419 }
420 spectralFlux[frameCount] = flux;
421 for (int i = 0; i < freqMapSize; i++)
422 frames[frameCount][i] = newFrame[i];
423 int index = cbIndex - (fftSize - hopSize);
424 if (index < 0)
425 index += fftSize;
426 int sz = (fftSize - hopSize) / energyOversampleFactor;
427 for (int j = 0; j < energyOversampleFactor; j++) {
428 double newEnergy = 0;
429 for (int i = 0; i < sz; i++) {
430 newEnergy += circBuffer[index] * circBuffer[index];
431 if (++index == fftSize)
432 index = 0;
433 }
434 energy[frameCount * energyOversampleFactor + j] =
435 newEnergy / sz <= 1e-6? 0: Math.log(newEnergy / sz) + 13.816;
436 }
437 double decay = frameCount >= 200? 0.99:
438 (frameCount < 100? 0: (frameCount - 100) / 100.0);
439 if (ltAverage == 0)
440 ltAverage = frameRMS;
441 else
442 ltAverage = ltAverage * decay + frameRMS * (1.0 - decay);
443 if (frameRMS <= silenceThreshold)
444 for (int i = 0; i < freqMapSize; i++)
445 frames[frameCount][i] = 0;
446 else {
447 if (normaliseMode == 1)
448 for (int i = 0; i < freqMapSize; i++)
449 frames[frameCount][i] /= frameRMS;
450 else if (normaliseMode == 2)
451 for (int i = 0; i < freqMapSize; i++)
452 frames[frameCount][i] /= ltAverage;
453 for (int i = 0; i < freqMapSize; i++) {
454 frames[frameCount][i] = Math.log(frames[frameCount][i]) + rangeThreshold;
455 if (frames[frameCount][i] < 0)
456 frames[frameCount][i] = 0;
457 }
458 }
459 // weightedPhaseDeviation();
460 // if (debug)
461 // System.err.printf("PhaseDev: t=%7.3f phDev=%7.3f RMS=%7.3f\n",
462 // frameCount * hopTime,
463 // phaseDeviation[frameCount],
464 // frameRMS);
465 double[] tmp = prevFrame;
466 prevFrame = reBuffer;
467 reBuffer = tmp;
468 frameCount++;
469 if ((frameCount % 100) == 0) {
470 if (!silent) {
471 System.err.printf("Progress: %1d %5.3f %5.3f\n",
472 frameCount, frameRMS, ltAverage);
473 Profile.report();
474 }
475 if ((progressCallback != null) && (totalFrames > 0))
476 progressCallback.setFraction((double)frameCount/totalFrames);
477 }
478 }
479 } // processFrame()
480
481 /** Processes a complete file of audio data. */
482 public void processFile() {
483 while (pcmInputStream != null) {
484 // Profile.start(0);
485 processFrame();
486 // Profile.log(0);
487 if (Thread.currentThread().isInterrupted()) {
488 System.err.println("info: INTERRUPTED in processFile()");
489 return;
490 }
491 }
492
493 // double[] x1 = new double[phaseDeviation.length];
494 // for (int i = 0; i < x1.length; i++) {
495 // x1[i] = i * hopTime;
496 // phaseDeviation[i] = (phaseDeviation[i] - 0.4) * 100;
497 // }
498 // double[] x2 = new double[energy.length];
499 // for (int i = 0; i < x2.length; i++)
500 // x2[i] = i * hopTime / energyOversampleFactor;
501 // // plot.clear();
502 // plot.addPlot(x1, phaseDeviation, Color.green, 7);
503 // plot.addPlot(x2, energy, Color.red, 7);
504 // plot.setTitle("Test phase deviation");
505 // plot.fitAxes();
506
507 // double[] slope = new double[energy.length];
508 // double hop = hopTime / energyOversampleFactor;
509 // Peaks.getSlope(energy, hop, 15, slope);
510 // LinkedList<Integer> peaks = Peaks.findPeaks(slope, (int)Math.round(0.06 / hop), 10);
511
512 double hop = hopTime;
513 Peaks.normalise(spectralFlux);
514 LinkedList<Integer> peaks = Peaks.findPeaks(spectralFlux, (int)Math.round(0.06 / hop), 0.35, 0.84, true);
515 onsets = new double[peaks.size()];
516 double[] y2 = new double[onsets.length];
517 Iterator<Integer> it = peaks.iterator();
518 onsetList = new EventList();
519 double minSalience = Peaks.min(spectralFlux);
520 for (int i = 0; i < onsets.length; i++) {
521 int index = it.next();
522 onsets[i] = index * hop;
523 y2[i] = spectralFlux[index];
524 Event e = BeatTrackDisplay.newBeat(onsets[i], 0);
525 // if (debug)
526 // System.err.printf("Onset: %8.3f %8.3f %8.3f\n",
527 // onsets[i], energy[index], slope[index]);
528 // e.salience = slope[index]; // or combination of energy + slope??
529 // Note that salience must be non-negative or the beat tracking system fails!
530 e.salience = spectralFlux[index] - minSalience;
531 onsetList.add(e);
532 }
533 if (progressCallback != null)
534 progressCallback.setFraction(1.0);
535 if (doOnsetPlot) {
536 double[] x1 = new double[spectralFlux.length];
537 for (int i = 0; i < x1.length; i++)
538 x1[i] = i * hopTime;
539 plot.addPlot(x1, spectralFlux, Color.red, 4);
540 plot.addPlot(onsets, y2, Color.green, 3);
541 plot.setTitle("Spectral flux and onsets");
542 plot.fitAxes();
543 }
544 if (debug) {
545 System.err.printf("Onsets: %d\nContinue? ", onsets.length);
546 readLine();
547 }
548 } // processFile()
549
550 /** Reads a text file containing a list of whitespace-separated feature values.
551 * Created for paper submitted to ICASSP'07.
552 * @param fileName File containing the data
553 * @return An array containing the feature values
554 */
555 public static double[] getFeatures(String fileName) {
556 ArrayList<Double> l = new ArrayList<Double>();
557 try {
558 BufferedReader b = new BufferedReader(new FileReader(fileName));
559 while (true) {
560 String s = b.readLine();
561 if (s == null)
562 break;
563 int start = 0;
564 while (start < s.length()) {
565 int len = s.substring(start).indexOf(' ');
566 String t = null;
567 if (len < 0)
568 t = s.substring(start);
569 else if (len > 0) {
570 t = s.substring(start, start + len);
571 }
572 if (t != null)
573 try {
574 l.add(Double.parseDouble(t));
575 } catch (NumberFormatException e) {
576 System.err.println(e);
577 if (l.size() == 0)
578 l.add(new Double(0));
579 else
580 l.add(new Double(l.get(l.size()-1)));
581 }
582 start += len + 1;
583 if (len < 0)
584 break;
585 }
586 }
587 double[] features = new double[l.size()];
588 Iterator<Double> it = l.iterator();
589 for (int i = 0; it.hasNext(); i++)
590 features[i] = it.next().doubleValue();
591 return features;
592 } catch (FileNotFoundException e) {
593 e.printStackTrace();
594 return null;
595 } catch (IOException e) {
596 e.printStackTrace();
597 return null;
598 } catch (NumberFormatException e) {
599 e.printStackTrace();
600 return null;
601 }
602 } // getFeatures()
603
604 /** Reads a file of feature values, treated as an onset detection function,
605 * and finds peaks, which are stored in <code>onsetList</code> and <code>onsets</code>.
606 * @param fileName The file of feature values
607 * @param hopTime The spacing of feature values in time
608 */
609 public void processFeatures(String fileName, double hopTime) {
610 double hop = hopTime;
611 double[] features = getFeatures(fileName);
612 Peaks.normalise(features);
613 LinkedList<Integer> peaks = Peaks.findPeaks(features, (int)Math.round(0.06 / hop), 0.35, 0.84, true);
614 onsets = new double[peaks.size()];
615 double[] y2 = new double[onsets.length];
616 Iterator<Integer> it = peaks.iterator();
617 onsetList = new EventList();
618 double minSalience = Peaks.min(features);
619 for (int i = 0; i < onsets.length; i++) {
620 int index = it.next();
621 onsets[i] = index * hop;
622 y2[i] = features[index];
623 Event e = BeatTrackDisplay.newBeat(onsets[i], 0);
624 e.salience = features[index] - minSalience;
625 onsetList.add(e);
626 }
627 } // processFeatures()
628
629 /** Copies output of audio processing to the display panel. */
630 public void setDisplay(BeatTrackDisplay btd) {
631 int energy2[] = new int[totalFrames*energyOversampleFactor];
632 double time[] = new double[totalFrames*energyOversampleFactor];
633 for (int i = 0; i < totalFrames*energyOversampleFactor; i++) {
634 energy2[i] = (int) (energy[i] * 4 * energyOversampleFactor);
635 time[i] = i * hopTime / energyOversampleFactor;
636 }
637 btd.setMagnitudes(energy2);
638 btd.setEnvTimes(time);
639 btd.setSpectro(frames, totalFrames, hopTime, 0);//fftTime/hopTime);
640 btd.setOnsets(onsets);
641 btd.setOnsetList(onsetList);
642 } // setDisplay()
643
644 } // class AudioProcessor
645
646
647 #endif