andrewm@55: /* andrewm@55: * render.cpp andrewm@55: * andrewm@55: * Created on: Oct 24, 2014 andrewm@55: * Author: parallels andrewm@55: */ andrewm@55: andrewm@55: andrewm@56: #include andrewm@55: #include andrewm@55: andrewm@55: #define ANALOG_LOW (2048.0 / 65536.0) andrewm@55: #define ANALOG_HIGH (50000.0 / 65536.0) andrewm@55: andrewm@55: const int gDACPinOrder[] = {6, 4, 2, 0, 1, 3, 5, 7}; andrewm@55: andrewm@55: uint64_t gLastErrorFrame = 0; andrewm@55: uint32_t gEnvelopeSampleCount = 0; andrewm@55: float gEnvelopeValue = 0.5; andrewm@55: float gEnvelopeDecayRate = 0.9995; andrewm@55: andrewm@56: // setup() is called once before the audio rendering starts. andrewm@55: // Use it to perform any initialisation and allocation which is dependent andrewm@55: // on the period size or sample rate. andrewm@55: // andrewm@55: // userData holds an opaque pointer to a data structure that was passed andrewm@55: // in from the call to initAudio(). andrewm@55: // andrewm@55: // Return true on success; returning false halts the program. andrewm@55: andrewm@56: bool setup(BeagleRTContext *context, void *userData) andrewm@55: { andrewm@55: return true; andrewm@55: } andrewm@55: andrewm@55: // render() is called regularly at the highest priority by the audio engine. andrewm@55: // Input and output are given from the audio hardware and the other andrewm@55: // ADCs and DACs (if available). If only audio is available, numMatrixFrames andrewm@55: // will be 0. andrewm@55: andrewm@55: void render(BeagleRTContext *context, void *userData) andrewm@55: { andrewm@55: static float phase = 0.0; andrewm@55: static int sampleCounter = 0; andrewm@55: static int invertChannel = 0; andrewm@55: float frequency = 0; andrewm@55: andrewm@55: // Play a sine wave on the audio output andrewm@55: for(unsigned int n = 0; n < context->audioFrames; n++) { andrewm@55: context->audioOut[2*n] = context->audioOut[2*n + 1] = gEnvelopeValue * sinf(phase); andrewm@55: andrewm@55: // If one second has gone by with no error, play one sound, else andrewm@55: // play another andrewm@55: if(context->audioSampleCount + n - gLastErrorFrame > 44100) { andrewm@55: gEnvelopeValue *= gEnvelopeDecayRate; andrewm@55: gEnvelopeSampleCount++; andrewm@55: if(gEnvelopeSampleCount > 22050) { andrewm@55: gEnvelopeValue = 0.5; andrewm@55: gEnvelopeSampleCount = 0; andrewm@55: } andrewm@55: frequency = 880.0; andrewm@55: } andrewm@55: else { andrewm@55: gEnvelopeValue = 0.5; andrewm@55: frequency = 220.0; andrewm@55: } andrewm@55: andrewm@55: phase += 2.0 * M_PI * frequency / 44100.0; andrewm@55: if(phase >= 2.0 * M_PI) andrewm@55: phase -= 2.0 * M_PI; andrewm@55: } andrewm@55: andrewm@55: for(unsigned int n = 0; n < context->analogFrames; n++) { andrewm@55: // Change outputs every 512 samples andrewm@55: if(sampleCounter < 512) { andrewm@55: for(int k = 0; k < 8; k++) { andrewm@55: if(k == invertChannel) andrewm@55: context->analogOut[n*8 + gDACPinOrder[k]] = ANALOG_HIGH; andrewm@55: else andrewm@55: context->analogOut[n*8 + gDACPinOrder[k]] = 0; andrewm@55: } andrewm@55: } andrewm@55: else { andrewm@55: for(int k = 0; k < 8; k++) { andrewm@55: if(k == invertChannel) andrewm@55: context->analogOut[n*8 + gDACPinOrder[k]] = 0; andrewm@55: else andrewm@55: context->analogOut[n*8 + gDACPinOrder[k]] = ANALOG_HIGH; andrewm@55: } andrewm@55: } andrewm@55: andrewm@55: // Read after 256 samples: input should be low andrewm@55: if(sampleCounter == 256) { andrewm@55: for(int k = 0; k < 8; k++) { andrewm@55: if(k == invertChannel) { andrewm@55: if(context->analogIn[n*8 + k] < ANALOG_HIGH) { andrewm@55: rt_printf("FAIL [output %d, input %d] -- output HIGH input %f (inverted)\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]); andrewm@55: gLastErrorFrame = context->audioSampleCount + n; andrewm@55: } andrewm@55: } andrewm@55: else { andrewm@55: if(context->analogIn[n*8 + k] > ANALOG_LOW) { andrewm@55: rt_printf("FAIL [output %d, input %d] -- output LOW --> input %f\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]); andrewm@55: gLastErrorFrame = context->audioSampleCount + n; andrewm@55: } andrewm@55: } andrewm@55: } andrewm@55: } andrewm@55: else if(sampleCounter == 768) { andrewm@55: for(int k = 0; k < 8; k++) { andrewm@55: if(k == invertChannel) { andrewm@55: if(context->analogIn[n*8 + k] > ANALOG_LOW) { andrewm@55: rt_printf("FAIL [output %d, input %d] -- output LOW input %f (inverted)\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]); andrewm@55: gLastErrorFrame = context->audioSampleCount + n; andrewm@55: } andrewm@55: } andrewm@55: else { andrewm@55: if(context->analogIn[n*8 + k] < ANALOG_HIGH) { andrewm@55: rt_printf("FAIL [output %d, input %d] -- output HIGH input %f\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]); andrewm@55: gLastErrorFrame = context->audioSampleCount + n; andrewm@55: } andrewm@55: } andrewm@55: } andrewm@55: } andrewm@55: andrewm@55: if(++sampleCounter >= 1024) { andrewm@55: sampleCounter = 0; andrewm@55: invertChannel++; andrewm@55: if(invertChannel >= 8) andrewm@55: invertChannel = 0; andrewm@55: } andrewm@55: } andrewm@55: } andrewm@55: andrewm@56: // cleanup() is called once at the end, after the audio has stopped. andrewm@56: // Release any resources that were allocated in setup(). andrewm@55: andrewm@56: void cleanup(BeagleRTContext *context, void *userData) andrewm@55: { andrewm@55: andrewm@55: }