chris@162: /** chris@162: * Copyright (c) 2014, 2015, Enzien Audio Ltd. chris@162: * chris@162: * Permission to use, copy, modify, and/or distribute this software for any chris@162: * purpose with or without fee is hereby granted, provided that the above chris@162: * copyright notice and this permission notice appear in all copies. chris@162: * chris@162: * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH chris@162: * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY chris@162: * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, chris@162: * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM chris@162: * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR chris@162: * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR chris@162: * PERFORMANCE OF THIS SOFTWARE. chris@162: */ chris@162: chris@162: #ifndef _HEAVY_SIGNAL_PHASOR_H_ chris@162: #define _HEAVY_SIGNAL_PHASOR_H_ chris@162: chris@162: #include "HvBase.h" chris@162: chris@162: typedef struct SignalPhasor { chris@162: #if HV_SIMD_AVX chris@162: __m256 phase; // current phase chris@162: __m256 inc; // phase increment chris@162: #elif HV_SIMD_SSE chris@162: __m128i phase; chris@162: __m128i inc; chris@162: #elif HV_SIMD_NEON chris@162: uint32x4_t phase; chris@162: int32x4_t inc; chris@162: #else // HV_SIMD_NONE chris@162: hv_uint32_t phase; chris@162: hv_int32_t inc; chris@162: #endif chris@162: union { chris@162: float f2sc; // float to step conversion (used for __phasor~f) chris@162: hv_int32_t s; // step value (used for __phasor_k~f) chris@162: } step; chris@162: } SignalPhasor; chris@162: chris@162: hv_size_t sPhasor_init(SignalPhasor *o, double samplerate); chris@162: chris@162: hv_size_t sPhasor_k_init(SignalPhasor *o, float frequency, double samplerate); chris@162: chris@162: void sPhasor_k_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m); chris@162: chris@162: void sPhasor_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m); chris@162: chris@162: static inline void __hv_phasor_f(SignalPhasor *o, hv_bInf_t bIn, hv_bOutf_t bOut) { chris@162: #if HV_SIMD_AVX chris@162: __m256 p = _mm256_mul_ps(bIn, _mm256_set1_ps(o->step.f2sc)); // a b c d e f g h chris@162: chris@162: __m256 z = _mm256_setzero_ps(); chris@162: chris@162: // http://stackoverflow.com/questions/11906814/how-to-rotate-an-sse-avx-vector chris@162: __m256 a = _mm256_permute_ps(p, _MM_SHUFFLE(2,1,0,3)); // d a b c h e f g chris@162: __m256 b = _mm256_permute2f128_ps(a, a, 0x01); // h e f g d a b c chris@162: __m256 c = _mm256_blend_ps(a, b, 0x10); // d a b c d e f g chris@162: __m256 d = _mm256_blend_ps(c, z, 0x01); // 0 a b c d e f g chris@162: __m256 e = _mm256_add_ps(p, d); // a (a+b) (b+c) (c+d) (d+e) (e+f) (f+g) (g+h) chris@162: chris@162: __m256 f = _mm256_permute_ps(e, _MM_SHUFFLE(1,0,3,2)); // (b+c) (c+d) a (a+b) (f+g) (g+h) (d+e) (e+f) chris@162: __m256 g = _mm256_permute2f128_ps(f, f, 0x01); // (f+g) (g+h) (d+e) (e+f) (b+c) (c+d) a (a+b) chris@162: __m256 h = _mm256_blend_ps(f, g, 0x33); // (b+c) (c+d) a (a+b) (b+c) (c+d) (d+e) (e+f) chris@162: __m256 i = _mm256_blend_ps(h, z, 0x03); // 0 0 a (a+b) (b+c) (c+d) (d+e) (e+f) chris@162: __m256 j = _mm256_add_ps(e, i); // a (a+b) (a+b+c) (a+b+c+d) (b+c+d+e) (c+d+e+f) (d+e+f+g) (e+f+g+h) chris@162: chris@162: __m256 k = _mm256_permute2f128_ps(j, z, 0x02); // 0 0 0 0 a (a+b) (a+b+c) (a+b+c+d) (b+c+d+e) chris@162: __m256 m = _mm256_add_ps(j, k); // a (a+b) (a+b+c) (a+b+c+d) (a+b+c+d+e) (a+b+c+d+e+f) (a+b+c+d+e+f+g) (a+b+c+d+e+f+g+h) chris@162: chris@162: __m256 n = _mm256_or_ps(_mm256_andnot_ps( chris@162: _mm256_set1_ps(-INFINITY), chris@162: _mm256_add_ps(o->phase, m)), chris@162: _mm256_set1_ps(1.0f)); chris@162: chris@162: *bOut = _mm256_sub_ps(n, _mm256_set1_ps(1.0f)); chris@162: chris@162: __m256 x = _mm256_permute_ps(n, _MM_SHUFFLE(3,3,3,3)); chris@162: o->phase = _mm256_permute2f128_ps(x, x, 0x11); chris@162: #elif HV_SIMD_SSE chris@162: __m128i p = _mm_cvtps_epi32(_mm_mul_ps(bIn, _mm_set1_ps(o->step.f2sc))); // convert frequency to step chris@162: p = _mm_add_epi32(p, _mm_slli_si128(p, 4)); // add incremental steps to phase (prefix sum) chris@162: p = _mm_add_epi32(p, _mm_slli_si128(p, 8)); // http://stackoverflow.com/questions/10587598/simd-prefix-sum-on-intel-cpu?rq=1 chris@162: p = _mm_add_epi32(o->phase, p); chris@162: *bOut = _mm_sub_ps(_mm_castsi128_ps( chris@162: _mm_or_si128(_mm_srli_epi32(p, 9), chris@162: (__m128i) {0x3F8000003F800000L, 0x3F8000003F800000L})), chris@162: _mm_set1_ps(1.0f)); chris@162: o->phase = _mm_shuffle_epi32(p, _MM_SHUFFLE(3,3,3,3)); chris@162: #elif HV_SIMD_NEON chris@162: int32x4_t p = vcvtq_s32_f32(vmulq_n_f32(bIn, o->step.f2sc)); chris@162: p = vaddq_s32(p, vextq_s32(vdupq_n_s32(0), p, 3)); // http://stackoverflow.com/questions/11259596/arm-neon-intrinsics-rotation chris@162: p = vaddq_s32(p, vextq_s32(vdupq_n_s32(0), p, 2)); chris@162: uint32x4_t pp = vaddq_u32(o->phase, vreinterpretq_u32_s32(p)); chris@162: *bOut = vsubq_f32(vreinterpretq_f32_u32(vorrq_u32(vshrq_n_u32(pp, 9), vdupq_n_u32(0x3F800000))), vdupq_n_f32(1.0f)); chris@162: o->phase = vdupq_n_u32(pp[3]); chris@162: #else // HV_SIMD_NONE chris@162: const hv_uint32_t p = (o->phase >> 9) | 0x3F800000; chris@162: *bOut = *((float *) (&p)) - 1.0f; chris@162: o->phase += ((int) (bIn * o->step.f2sc)); chris@162: #endif chris@162: } chris@162: chris@162: static inline void __hv_phasor_k_f(SignalPhasor *o, hv_bOutf_t bOut) { chris@162: #if HV_SIMD_AVX chris@162: *bOut = _mm256_sub_ps(o->phase, _mm256_set1_ps(1.0f)); chris@162: o->phase = _mm256_or_ps(_mm256_andnot_ps( chris@162: _mm256_set1_ps(-INFINITY), chris@162: _mm256_add_ps(o->phase, o->inc)), chris@162: _mm256_set1_ps(1.0f)); chris@162: #elif HV_SIMD_SSE chris@162: *bOut = _mm_sub_ps(_mm_castsi128_ps( chris@162: _mm_or_si128(_mm_srli_epi32(o->phase, 9), chris@162: (__m128i) {0x3F8000003F800000L, 0x3F8000003F800000L})), chris@162: _mm_set1_ps(1.0f)); chris@162: o->phase = _mm_add_epi32(o->phase, o->inc); chris@162: #elif HV_SIMD_NEON chris@162: *bOut = vsubq_f32(vreinterpretq_f32_u32( chris@162: vorrq_u32(vshrq_n_u32(o->phase, 9), chris@162: vdupq_n_u32(0x3F800000))), chris@162: vdupq_n_f32(1.0f)); chris@162: o->phase = vaddq_u32(o->phase, vreinterpretq_u32_s32(o->inc)); chris@162: #else // HV_SIMD_NONE chris@162: const hv_uint32_t p = (o->phase >> 9) | 0x3F800000; chris@162: *bOut = *((float *) (&p)) - 1.0f; chris@162: o->phase += o->inc; chris@162: #endif chris@162: } chris@162: chris@162: #endif // _HEAVY_SIGNAL_PHASOR_H_