robert@464: /* robert@464: ____ _____ _ _ robert@464: | __ )| ____| | / \ robert@464: | _ \| _| | | / _ \ robert@464: | |_) | |___| |___ / ___ \ robert@464: |____/|_____|_____/_/ \_\ robert@464: robert@464: The platform for ultra-low latency audio and sensor processing robert@464: robert@464: http://bela.io robert@464: robert@464: A project of the Augmented Instruments Laboratory within the robert@464: Centre for Digital Music at Queen Mary University of London. robert@464: http://www.eecs.qmul.ac.uk/~andrewm robert@464: robert@464: (c) 2016 Augmented Instruments Laboratory: Andrew McPherson, robert@464: Astrid Bin, Liam Donovan, Christian Heinrichs, Robert Jack, robert@464: Giulio Moro, Laurel Pardue, Victor Zappi. All rights reserved. robert@464: robert@464: The Bela software is distributed under the GNU Lesser General Public License robert@464: (LGPL 3.0), available here: https://www.gnu.org/licenses/lgpl-3.0.txt robert@464: */ robert@464: robert@464: robert@464: #include robert@464: #include robert@464: #include robert@464: robert@464: Scope scope; robert@464: robert@464: float gInverseSampleRate; robert@464: float gPhase; robert@464: robert@464: bool setup(BelaContext *context, void *userData) robert@464: { robert@464: robert@464: // setup the scope with 3 channels at the audio sample rate robert@464: scope.setup(3, context->audioSampleRate); robert@464: robert@464: gInverseSampleRate = 1.0 / context->audioSampleRate; robert@464: gPhase = 0.0; robert@464: robert@464: return true; robert@464: } robert@464: robert@464: void render(BelaContext *context, void *userData) robert@464: { robert@464: robert@464: for(unsigned int n = 0; n < context->audioFrames; n++) { robert@464: robert@464: // read analogIn channels 0 and 1 robert@464: float in1 = analogRead(context, n, 0); robert@464: float in2 = analogRead(context, n, 1); robert@464: robert@464: // map in1 to amplitude and in2 to frequency robert@464: float amplitude = in1 * 0.8f; robert@464: float frequency = map(in2, 0, 1, 100, 1000); robert@464: robert@464: // generate a sine wave with the amplitude and frequency robert@464: float out = amplitude * sinf(gPhase); robert@464: gPhase += 2.0 * M_PI * frequency * gInverseSampleRate; robert@464: if(gPhase > 2.0 * M_PI) robert@464: gPhase -= 2.0 * M_PI; robert@464: robert@464: // log the sine wave and sensor values on the scope robert@464: scope.log(out, in1, in2); robert@464: robert@464: // pass the sine wave to the audio outputs robert@464: for(unsigned int channel = 0; channel < context->audioChannels; channel++) robert@464: context->audioOut[n * context->audioChannels + channel] = out; robert@464: robert@464: } robert@464: } robert@464: robert@464: void cleanup(BelaContext *context, void *userData) robert@464: { robert@464: robert@464: } robert@464: robert@464: /* ------------ Project Explantation ------------ */ robert@464: robert@464: /** robert@500: \example scope-analog/render.cpp robert@464: robert@464: Connecting potentiometers robert@464: ------------------------- robert@464: robert@464: This example reads from analogue inputs 0 and 1 via `analogReadFrame()` and robert@464: generates a sine wave with amplitude and frequency determined by their values. robert@464: It's best to connect a 10K potentiometer to each of these analog inputs. Far robert@464: left and far right pins of the pot go to 3.3V and GND, the middle should be robert@464: connected to the analog in pins. robert@464: robert@464: The sine wave is then plotted on the oscilloscope. Click the Open Scope button to robert@464: view the results. As you turn the potentiometers you will see the amplitude and robert@464: frequency of the sine wave change. robert@464: robert@464: This project also shows as example of `map()` which allows you to re-scale a number robert@464: from one range to another. Note that `map()` does not constrain your variable robert@464: within the upper and lower limits. If you want to do this use the `constrain()` robert@464: function. robert@464: */