andrewm@66: /**
andrewm@66:  *  @file
andrewm@66:  *  @brief Wiring-inspired utility functions and macros
andrewm@0:  *
andrewm@66:  *  Macros and functions for I/O and data processing taking after the Wiring
andrewm@66:  *  (Arduino) language. This code began as part of the Hackable Instruments
andrewm@66:  *  project (EPSRC) at Queen Mary University of London, 2013-14.
andrewm@66:  *
andrewm@66:  *  (c) 2014-15 Andrew McPherson, Victor Zappi and Giulio Moro,
andrewm@66:  *  Queen Mary University of London
andrewm@0:  */
andrewm@0: 
andrewm@0: #ifndef UTILITIES_H_
andrewm@0: #define UTILITIES_H_
andrewm@0: 
andrewm@45: #include "BeagleRT.h"
andrewm@45: 
andrewm@72: #define HIGH 0x1
andrewm@72: #define LOW  0x0
andrewm@72: 
andrewm@72: #define INPUT 0x0
andrewm@72: #define OUTPUT 0x1
andrewm@72: 
andrewm@66: /// Set the given bit in \c word to 1.
andrewm@45: #define setBit(word,bit) 			((word) | (1 << (bit)))
andrewm@66: 
andrewm@66: /// Clear the given bit in \c word to 0.
andrewm@45: #define clearBit(word,bit) 			((word) &~ (1 << (bit)))
andrewm@66: 
andrewm@66: /// Check if the given bit in \c word is 1 (returns nonzero) or 0 (returns zero).
andrewm@45: #define getBit(word,bit) 			(((word) >> (bit)) & 1)
andrewm@66: 
andrewm@66: /// Set/clear the given bit in \c word to \c value.
andrewm@45: #define changeBit(word,bit,value) 	((clearBit((word),(bit))) | ((value) << (bit)))
andrewm@45: 
andrewm@45: #if 1
andrewm@56: // Note: pinMode(), analogWrite() and digitalWrite() should be able to be called from setup()
andrewm@56: // Likewise, thread launch should be able to be called from setup()
andrewm@45: // Also, make volume change functions callable from render() thread -- as an aux task?
andrewm@45: 
andrewm@68: /**
andrewm@68:  * \brief Read an analog input, specifying the frame number (when to read) and the channel.
andrewm@68:  *
andrewm@68:  * This function returns the value of an analog input, at the time indicated by \c frame.
andrewm@68:  * The returned value ranges from 0 to 1, corresponding to a voltage range of 0 to 4.096V.
andrewm@68:  *
andrewm@68:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@68:  * \param frame Which frame (i.e. what time) to read the analog input. Valid values range
andrewm@68:  * from 0 to (context->analogFrames - 1).
andrewm@68:  * \param channel Which analog input to read. Valid values are between 0 and
andrewm@68:  * (context->analogChannels - 1), typically 0 to 7 by default.
andrewm@68:  * \return Value of the analog input, range 0 to 1.
andrewm@68:  */
andrewm@45: float analogReadFrame(BeagleRTContext *context, int frame, int channel);
andrewm@68: 
andrewm@68: /**
andrewm@68:  * \brief Write an analog output, specifying the frame number (when to write) and the channel.
andrewm@68:  *
andrewm@68:  * This function sets the value of an analog output, at the time indicated by \c frame. Valid
andrewm@68:  * values are between 0 and 1, corresponding to the range 0 to 5V.
andrewm@68:  *
andrewm@68:  * The value written will persist for all future frames if BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST
andrewm@68:  * is set in context->flags. This is the default behaviour.
andrewm@68:  *
andrewm@68:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@68:  * \param frame Which frame (i.e. what time) to write the analog output. Valid values range
andrewm@68:  * from 0 to (context->analogFrames - 1).
andrewm@68:  * \param channel Which analog output to write. Valid values are between 0 and
andrewm@68:  * (context->analogChannels - 1), typically 0 to 7 by default.
andrewm@68:  * \param value Value to write to the output, range 0 to 1.
andrewm@68:  */
andrewm@45: void analogWriteFrame(BeagleRTContext *context, int frame, int channel, float value);
andrewm@68: 
andrewm@68: /**
andrewm@68:  * \brief Write an analog output, specifying the frame number (when to write) and the channel.
andrewm@68:  *
andrewm@68:  * This function sets the value of an analog output, at the time indicated by \c frame. Valid
andrewm@68:  * values are between 0 and 1, corresponding to the range 0 to 5V.
andrewm@68:  *
andrewm@68:  * Unlike analogWriteFrame(), the value written will affect \b only the frame specified, with
andrewm@72:  * future values unchanged. This is faster than analogWriteFrame() so is better suited
andrewm@68:  * to applications where every frame will be written to a different value. If
andrewm@68:  * BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST is not set within context->flags, then
andrewm@68:  * analogWriteFrameOnce() and analogWriteFrame() are equivalent.
andrewm@68:  *
andrewm@68:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@68:  * \param frame Which frame (i.e. what time) to write the analog output. Valid values range
andrewm@68:  * from 0 to (context->analogFrames - 1).
andrewm@68:  * \param channel Which analog output to write. Valid values are between 0 and
andrewm@68:  * (context->analogChannels - 1), typically 0 to 7 by default.
andrewm@68:  * \param value Value to write to the output, range 0 to 1.
andrewm@68:  */
andrewm@45: void analogWriteFrameOnce(BeagleRTContext *context, int frame, int channel, float value);
andrewm@45: 
andrewm@72: /**
andrewm@72:  * \brief Read a digital input, specifying the frame number (when to read) and the pin.
andrewm@72:  *
andrewm@72:  * This function returns the value of a digital input, at the time indicated by \c frame.
andrewm@72:  * The value is 0 if the pin is low, and nonzero if the pin is high (3.3V).
andrewm@72:  *
andrewm@72:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72:  * \param frame Which frame (i.e. what time) to read the digital input. Valid values range
andrewm@72:  * from 0 to (context->digitalFrames - 1).
andrewm@72:  * \param channel Which digital pin to read. 16 pins across the P8 and P9 headers of the
andrewm@72:  * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72:  * digital_gpio_mapping.h.
andrewm@72:  * \return Value of the digital input.
andrewm@72:  */
andrewm@45: int digitalReadFrame(BeagleRTContext *context, int frame, int channel);
andrewm@72: 
andrewm@72: /**
andrewm@72:  * \brief Write a digital output, specifying the frame number (when to write) and the pin.
andrewm@72:  *
andrewm@72:  * This function sets the value of a digital output, at the time indicated by \c frame.
andrewm@72:  * A value of 0 sets the pin low; any other value sets the pin high (3.3V).
andrewm@72:  *
andrewm@72:  * The value written will persist for all future frames.
andrewm@72:  *
andrewm@72:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72:  * \param frame Which frame (i.e. what time) to write the digital output. Valid values range
andrewm@72:  * from 0 to (context->digitalFrames - 1).
andrewm@72:  * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72:  * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72:  * digital_gpio_mapping.h.
andrewm@72:  * \param value Value to write to the output.
andrewm@72:  */
andrewm@45: void digitalWriteFrame(BeagleRTContext *context, int frame, int channel, int value);
andrewm@72: 
andrewm@72: /**
andrewm@72:  * \brief Write a digital output, specifying the frame number (when to write) and the pin.
andrewm@72:  *
andrewm@72:  * This function sets the value of a digital output, at the time indicated by \c frame.
andrewm@72:  * A value of 0 sets the pin low; any other value sets the pin high (3.3V).
andrewm@72:  *
andrewm@72:  * Unlike digitalWriteFrame(), the value written will affect \b only the frame specified, with
andrewm@72:  * future values unchanged. This is faster than digitalWriteFrame() so is better suited
andrewm@72:  * to applications where every frame will be written to a different value.
andrewm@72:  *
andrewm@72:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72:  * \param frame Which frame (i.e. what time) to write the digital output. Valid values range
andrewm@72:  * from 0 to (context->digitalFrames - 1).
andrewm@72:  * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72:  * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72:  * digital_gpio_mapping.h.
andrewm@72:  * \param value Value to write to the output.
andrewm@72:  */
andrewm@45: void digitalWriteFrameOnce(BeagleRTContext *context, int frame, int channel, int value);
andrewm@45: 
andrewm@72: /**
andrewm@72:  * \brief Set the direction of a digital pin to input or output.
andrewm@72:  *
andrewm@72:  * This function sets the direction of a digital pin, at the time indicated by \c frame.
andrewm@72:  * Valid values are \c INPUT and \c OUTPUT. All pins begin as inputs by default.
andrewm@72:  *
andrewm@72:  * The value written will persist for all future frames.
andrewm@72:  *
andrewm@72:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72:  * \param frame Which frame (i.e. what time) to set the pin direction. Valid values range
andrewm@72:  * from 0 to (context->digitalFrames - 1).
andrewm@72:  * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72:  * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72:  * digital_gpio_mapping.h.
andrewm@72:  * \param value Direction of the pin (\c INPUT or \c OUTPUT).
andrewm@72:  */
andrewm@45: void pinModeFrame(BeagleRTContext *context, int frame, int channel, int mode);
andrewm@72: 
andrewm@72: /**
andrewm@72:  * \brief Set the direction of a digital pin to input or output.
andrewm@72:  *
andrewm@72:  * This function sets the direction of a digital pin, at the time indicated by \c frame.
andrewm@72:  * Valid values are \c INPUT and \c OUTPUT. All pins begin as inputs by default.
andrewm@72:  *
andrewm@72:  * The value written will affect only the specified frame.
andrewm@72:  *
andrewm@72:  * \param context The I/O data structure which is passed by BeagleRT to render().
andrewm@72:  * \param frame Which frame (i.e. what time) to set the pin direction. Valid values range
andrewm@72:  * from 0 to (context->digitalFrames - 1).
andrewm@72:  * \param channel Which digital output to write. 16 pins across the P8 and P9 headers of the
andrewm@72:  * BeagleBone Black are available. See the constants P8_xx and P9_xx defined in
andrewm@72:  * digital_gpio_mapping.h.
andrewm@72:  * \param value Direction of the pin (\c INPUT or \c OUTPUT).
andrewm@72:  */
andrewm@45: void pinModeFrameOnce(BeagleRTContext *context, int frame, int channel, int mode);
andrewm@45: 
andrewm@45: #else
andrewm@13: 
giuliomoro@19: // Macros for accessing the analog values: usable _only_ within render()
andrewm@5: 
giuliomoro@19: // Read an Analog input from input pin p at frame f
giuliomoro@23: #define analogRead(p, f) (analogIn[(f)*gNumAnalogChannels + (p)])
giuliomoro@19: // Write an Analog output frame at output pin p, frame f, to value v
giuliomoro@23: #define analogWriteFrame(p, f, v) (analogOut[(f)*gNumAnalogChannels + (p)] = (v))
giuliomoro@23: #define analogWrite(pin, frame, value) \
giuliomoro@18: (({do {\
giuliomoro@19: 	for (int _privateI=(frame); _privateI<numAnalogFrames; _privateI++){ \
giuliomoro@23: 		analogWriteFrame(pin,_privateI,value); \
giuliomoro@18: 	}\
giuliomoro@18: 	} while (0);}),(void)0)\
andrewm@5: 
andrewm@45: 
giuliomoro@19: //digital API:
giuliomoro@33: #define setDigitalDirectionFrame(pin,frame,direction) digital[(frame)]=changeBit(digital[(frame)],(pin),(direction)),void(0)
giuliomoro@33: #define setDigitalDirection(pin,frame,direction)\
giuliomoro@33: 		(({do {\
giuliomoro@33: 			for(int _privateI=(frame); _privateI<numDigitalFrames; _privateI++)\
giuliomoro@33: 				setDigitalDirectionFrame(pin,_privateI,direction);\
giuliomoro@33: 			} while (0);}), (void)0)
giuliomoro@19: #define digitalWriteAll(frame,value) digital[(frame)]=0xffff0000*(!(!value));
giuliomoro@16: //sets the bit in the high word, clears the bit in the low word (just in case the direction was not previously set)
giuliomoro@19: #define digitalWriteFrame(pin, frame, value) digital[(frame)]=( changeBit(digital[(frame)], (pin+16), (value)) & (0xffffffff-(1<<(pin))) ) //could have been done with two subsequent assignments
giuliomoro@18: #define digitalWrite(pin, frame, value) \
giuliomoro@18: 	(({do {\
giuliomoro@33: 		for (int _privateI=(frame); _privateI<numDigitalFrames; _privateI++) \
giuliomoro@18: 			digitalWriteFrame(pin,_privateI,value); \
giuliomoro@18: 		} while (0);}),(void)0)\
giuliomoro@18: 
giuliomoro@19: #define digitalRead(pin, frame) ( getBit(digital[(frame)], pin+16) )
giuliomoro@16: 
andrewm@45: #endif
andrewm@45: 
andrewm@66: /**
andrewm@66:  * \brief Linearly rescale a number from one range of values to another.
andrewm@66:  *
andrewm@66:  * This function linearly scales values of \c x such that the range in_min to
andrewm@66:  * in_max at the input corresponds to the range out_min to out_max
andrewm@66:  * at the output. Values outside this range are extrapolated.
andrewm@66:  *
andrewm@66:  * This function behaves identically to the function of the same name in Processing. It
andrewm@66:  * is also similar to the corresponding function in Arduino, except that it supports floating
andrewm@66:  * point values.
andrewm@66:  *
andrewm@66:  * \param x Input value to be mapped.
andrewm@66:  * \param in_min Lower bound of the input range.
andrewm@66:  * \param in_max Upper bound of the input range.
andrewm@66:  * \param out_min Lower bound of the output range.
andrewm@66:  * \param out_max Upper bound of the output range.
andrewm@66:  * \return Rescaled value.
andrewm@66:  */
andrewm@0: float map(float x, float in_min, float in_max, float out_min, float out_max);
andrewm@66: 
andrewm@66: /**
andrewm@66:  * \brief Constrain a number to stay within a given range.
andrewm@66:  *
andrewm@66:  * This function constrains \c x to remain within the range min_val to
andrewm@66:  * max_val. Values of \c x outside this range are clipped to the edges
andrewm@66:  * of the range.
andrewm@66:  *
andrewm@66:  * This function behaves identically to the function of the same name in Processing. It
andrewm@66:  * is also similar to the corresponding function in Arduino, except that it supports floating
andrewm@66:  * point values.
andrewm@66:  *
andrewm@66:  * \param x Input value to be constrained.
andrewm@66:  * \param min_val Minimum possible value.
andrewm@66:  * \param max_val Maximum possible value.
andrewm@66:  * \return Constrained value.
andrewm@66:  */
andrewm@0: float constrain(float x, float min_val, float max_val);
andrewm@0: 
andrewm@0: #endif /* UTILITIES_H_ */