Mercurial > hg > beaglert
view core/RTAudio.cpp @ 157:f36313cbb55d
Added capability to WriteFile to save binary files, added example project
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Tue, 13 Oct 2015 02:01:05 +0100 |
parents | f944d0b60fa8 |
children | 3068421c0737 e63563507edd |
line wrap: on
line source
/* * RTAudio.cpp * * Central control code for hard real-time audio on BeagleBone Black * using PRU and Xenomai Linux extensions. This code began as part * of the Hackable Instruments project (EPSRC) at Queen Mary University * of London, 2013-14. * * (c) 2014 Victor Zappi and Andrew McPherson * Queen Mary University of London */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <strings.h> #include <math.h> #include <iostream> #include <assert.h> #include <vector> // Xenomai-specific includes #include <sys/mman.h> #include <native/task.h> #include <native/timer.h> #include <native/intr.h> #include <rtdk.h> #include "../include/BeagleRT.h" #include "../include/PRU.h" #include "../include/I2c_Codec.h" #include "../include/GPIOcontrol.h" // ARM interrupt number for PRU event EVTOUT7 #define PRU_RTAUDIO_IRQ 21 using namespace std; // Data structure to keep track of auxiliary tasks we // can schedule typedef struct { RT_TASK task; void (*function)(void); char *name; int priority; } InternalAuxiliaryTask; const char gRTAudioThreadName[] = "beaglert-audio"; const char gRTAudioInterruptName[] = "beaglert-pru-irq"; // Real-time tasks and objects RT_TASK gRTAudioThread; #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS RT_INTR gRTAudioInterrupt; #endif PRU *gPRU = 0; I2c_Codec *gAudioCodec = 0; vector<InternalAuxiliaryTask*> gAuxTasks; // Flag which tells the audio task to stop bool gShouldStop = false; // general settings char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_ int gRTAudioVerbose = 0; // Verbosity level for debugging int gAmplifierMutePin = -1; int gAmplifierShouldBeginMuted = 0; // Context which holds all the audio/sensor data passed to the render routines BeagleRTContext gContext; // User data passed in from main() void *gUserData; // initAudio() prepares the infrastructure for running PRU-based real-time // audio, but does not actually start the calculations. // periodSize indicates the number of _sensor_ frames per period: the audio period size // is twice this value. In total, the audio latency in frames will be 4*periodSize, // plus any latency inherent in the ADCs and DACs themselves. // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec. // numAnalogChannels indicates how many ADC and DAC channels to use. // userData is an opaque pointer which will be passed through to the setup() // function for application-specific use // // Returns 0 on success. int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData) { rt_print_auto_init(1); BeagleRT_setVerboseLevel(settings->verbose); strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH); gUserData = userData; // Initialise context data structure memset(&gContext, 0, sizeof(BeagleRTContext)); if(gRTAudioVerbose) { cout << "Starting with period size " << settings->periodSize << "; "; if(settings->useAnalog) cout << "analog enabled\n"; else cout << "analog disabled\n"; cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel; cout << "dB; headphone level " << settings->headphoneLevel << "dB\n"; if(settings->beginMuted) cout << "Beginning with speaker muted\n"; } // Prepare GPIO pins for amplifier mute and status LED if(settings->ampMutePin >= 0) { gAmplifierMutePin = settings->ampMutePin; gAmplifierShouldBeginMuted = settings->beginMuted; if(gpio_export(settings->ampMutePin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n"; } if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on amplifier mute pin\n"; return -1; } if(gpio_set_value(settings->ampMutePin, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on amplifier mute pin\n"; return -1; } } // Limit the analog channels to sane values if(settings->numAnalogChannels >= 8) settings->numAnalogChannels = 8; else if(settings->numAnalogChannels >= 4) settings->numAnalogChannels = 4; else settings->numAnalogChannels = 2; // Sanity check the combination of channels and period size if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) { cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n"; return 1; } if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) { cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n"; return 1; } // Initialise the rendering environment: sample rates, frame counts, numbers of channels gContext.audioSampleRate = 44100.0; gContext.audioChannels = 2; if(settings->useAnalog) { gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4; gContext.analogFrames = settings->periodSize; gContext.analogChannels = settings->numAnalogChannels; gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels; } else { gContext.audioFrames = settings->periodSize * 2; gContext.analogFrames = 0; gContext.analogChannels = 0; gContext.analogSampleRate = 0; } // For now, digital frame rate is equal to audio frame rate if(settings->useDigital) { gContext.digitalFrames = gContext.audioFrames; gContext.digitalSampleRate = gContext.audioSampleRate; gContext.digitalChannels = settings->numDigitalChannels; } else { gContext.digitalFrames = 0; gContext.digitalSampleRate = 0; gContext.digitalChannels = 0; } // Set flags based on init settings if(settings->interleave) gContext.flags |= BEAGLERT_FLAG_INTERLEAVED; if(settings->analogOutputsPersist) gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST; // Use PRU for audio gPRU = new PRU(&gContext); gAudioCodec = new I2c_Codec(); // Initialise the GPIO pins, including possibly the digital pins in the render routines if(gPRU->prepareGPIO(1, 1)) { cout << "Error: unable to prepare GPIO for PRU audio\n"; return 1; } // Get the PRU memory buffers ready to go if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) { cout << "Error: unable to initialise PRU\n"; return 1; } // Prepare the audio codec, which clocks the whole system if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) { cout << "Unable to open codec I2C\n"; return 1; } if(gAudioCodec->initCodec()) { cout << "Error: unable to initialise audio codec\n"; return 1; } // Set default volume levels BeagleRT_setDACLevel(settings->dacLevel); BeagleRT_setADCLevel(settings->adcLevel); BeagleRT_setHeadphoneLevel(settings->headphoneLevel); // Call the user-defined initialisation function if(!setup(&gContext, userData)) { cout << "Couldn't initialise audio rendering\n"; return 1; } return 0; } // audioLoop() is the main function which starts the PRU audio code // and then transfers control to the PRU object. The PRU object in // turn will call the audio render() callback function every time // there is new data to process. void audioLoop(void *) { if(gRTAudioVerbose==1) rt_printf("_________________Audio Thread!\n"); // PRU audio assert(gAudioCodec != 0 && gPRU != 0); if(gAudioCodec->startAudio(0)) { rt_printf("Error: unable to start I2C audio codec\n"); gShouldStop = 1; } else { if(gPRU->start(gPRUFilename)) { rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename); gShouldStop = 1; } else { // All systems go. Run the loop; it will end when gShouldStop is set to 1 if(!gAmplifierShouldBeginMuted) { // First unmute the amplifier if(BeagleRT_muteSpeakers(0)) { if(gRTAudioVerbose) rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n"); } } #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS gPRU->loop(&gRTAudioInterrupt, gUserData); #else gPRU->loop(0, gUserData); #endif // Now clean up // gPRU->waitForFinish(); gPRU->disable(); gAudioCodec->stopAudio(); gPRU->cleanupGPIO(); } } if(gRTAudioVerbose == 1) rt_printf("audio thread ended\n"); } // Create a calculation loop which can run independently of the audio, at a different // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY; // priority should be generally be less than this. // Returns an (opaque) pointer to the created task on success; 0 on failure AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name) { InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask)); // Attempt to create the task if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) { cout << "Error: unable to create auxiliary task " << name << endl; free(newTask); return 0; } // Populate the rest of the data structure and store it in the vector newTask->function = functionToCall; newTask->name = strdup(name); newTask->priority = priority; gAuxTasks.push_back(newTask); return (AuxiliaryTask)newTask; } // Schedule a previously created auxiliary task. It will run when the priority rules next // allow it to be scheduled. void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task) { InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task; rt_task_resume(&taskToSchedule->task); } // Calculation loop that can be used for other tasks running at a lower // priority than the audio thread. Simple wrapper for Xenomai calls. // Treat the argument as containing the task structure void auxiliaryTaskLoop(void *taskStruct) { // Get function to call from the argument void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function; const char *name = ((InternalAuxiliaryTask *)taskStruct)->name; // Wait for a notification rt_task_suspend(NULL); while(!gShouldStop) { // Then run the calculations auxiliary_function(); // Wait for a notification rt_task_suspend(NULL); } if(gRTAudioVerbose == 1) rt_printf("auxiliary task %s ended\n", name); } // startAudio() should be called only after initAudio() successfully completes. // It launches the real-time Xenomai task which runs the audio loop. Returns 0 // on success. int BeagleRT_startAudio() { // Create audio thread with high Xenomai priority if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) { cout << "Error: unable to create Xenomai audio thread" << endl; return -1; } #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS // Create an interrupt which the audio thread receives from the PRU int result = 0; if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) { cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl; return -1; } #endif // Start all RT threads if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) { cout << "Error: unable to start Xenomai audio thread" << endl; return -1; } // The user may have created other tasks. Start those also. vector<InternalAuxiliaryTask*>::iterator it; for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) { InternalAuxiliaryTask *taskStruct = *it; if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) { cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl; return -1; } } return 0; } // Stop the PRU-based audio from running and wait // for the tasks to complete before returning. void BeagleRT_stopAudio() { // Tell audio thread to stop (if this hasn't been done already) gShouldStop = true; if(gRTAudioVerbose) cout << "Stopping audio...\n"; // Now wait for threads to respond and actually stop... rt_task_join(&gRTAudioThread); // Stop all the auxiliary threads too vector<InternalAuxiliaryTask*>::iterator it; for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) { InternalAuxiliaryTask *taskStruct = *it; // Wake up each thread and join it rt_task_resume(&(taskStruct->task)); rt_task_join(&(taskStruct->task)); } } // Free any resources associated with PRU real-time audio void BeagleRT_cleanupAudio() { cleanup(&gContext, gUserData); // Clean up the auxiliary tasks vector<InternalAuxiliaryTask*>::iterator it; for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) { InternalAuxiliaryTask *taskStruct = *it; // Delete the task rt_task_delete(&taskStruct->task); // Free the name string and the struct itself free(taskStruct->name); free(taskStruct); } gAuxTasks.clear(); // Delete the audio task and its interrupt #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS rt_intr_delete(&gRTAudioInterrupt); #endif rt_task_delete(&gRTAudioThread); if(gPRU != 0) delete gPRU; if(gAudioCodec != 0) delete gAudioCodec; if(gAmplifierMutePin >= 0) gpio_unexport(gAmplifierMutePin); gAmplifierMutePin = -1; } // Set the level of the DAC; affects all outputs (headphone, line, speaker) // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps int BeagleRT_setDACLevel(float decibels) { if(gAudioCodec == 0) return -1; return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5)); } // Set the level of the ADC // 0dB is the maximum, -12dB is the minimum; 1.5dB steps int BeagleRT_setADCLevel(float decibels) { if(gAudioCodec == 0) return -1; return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5)); } // Set the level of the onboard headphone amplifier; affects headphone // output only (not line out or speaker) // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps int BeagleRT_setHeadphoneLevel(float decibels) { if(gAudioCodec == 0) return -1; return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5)); } // Mute or unmute the onboard speaker amplifiers // mute == 0 means unmute; otherwise mute // Returns 0 on success int BeagleRT_muteSpeakers(int mute) { int pinValue = mute ? LOW : HIGH; // Check that we have an enabled pin for controlling the mute if(gAmplifierMutePin < 0) return -1; return gpio_set_value(gAmplifierMutePin, pinValue); } // Set the verbosity level void BeagleRT_setVerboseLevel(int level) { gRTAudioVerbose = level; }