view projects/cape_test/render.cpp @ 151:e9c9404e3d1f ClockSync

Pff partially working. No PID. When setting the audio clock on the bbb to 44098 the master and slave clock keep diverging instead of converging ...
author Giulio Moro <giuliomoro@yahoo.it>
date Tue, 22 Sep 2015 04:10:07 +0100
parents 3c3a1357657d
children 8d80eda512cd
line wrap: on
line source
/*
 * render.cpp
 *
 *  Created on: Oct 24, 2014
 *      Author: parallels
 */


#include <BeagleRT.h>
#include <cmath>

#define ANALOG_LOW	(2048.0 / 65536.0)
#define ANALOG_HIGH (50000.0 / 65536.0)

const int gDACPinOrder[] = {6, 4, 2, 0, 1, 3, 5, 7};

uint64_t gLastErrorFrame = 0;
uint32_t gEnvelopeSampleCount = 0;
float gEnvelopeValue = 0.5;
float gEnvelopeDecayRate = 0.9995;

// setup() is called once before the audio rendering starts.
// Use it to perform any initialisation and allocation which is dependent
// on the period size or sample rate.
//
// userData holds an opaque pointer to a data structure that was passed
// in from the call to initAudio().
//
// Return true on success; returning false halts the program.

bool setup(BeagleRTContext *context, void *userData)
{
	return true;
}

// render() is called regularly at the highest priority by the audio engine.
// Input and output are given from the audio hardware and the other
// ADCs and DACs (if available). If only audio is available, numMatrixFrames
// will be 0.

void render(BeagleRTContext *context, void *userData)
{
	static float phase = 0.0;
	static int sampleCounter = 0;
	static int invertChannel = 0;
	float frequency = 0;

	// Play a sine wave on the audio output
	for(unsigned int n = 0; n < context->audioFrames; n++) {
		context->audioOut[2*n] = context->audioOut[2*n + 1] = gEnvelopeValue * sinf(phase);

		// If one second has gone by with no error, play one sound, else
		// play another
		if(context->audioSampleCount + n - gLastErrorFrame > 44100) {
			gEnvelopeValue *= gEnvelopeDecayRate;
			gEnvelopeSampleCount++;
			if(gEnvelopeSampleCount > 22050) {
				gEnvelopeValue = 0.5;
				gEnvelopeSampleCount = 0;
			}
			frequency = 880.0;
		}
		else {
			gEnvelopeValue = 0.5;
			frequency = 220.0;
		}

		phase += 2.0 * M_PI * frequency / 44100.0;
		if(phase >= 2.0 * M_PI)
			phase -= 2.0 * M_PI;
	}

	for(unsigned int n = 0; n < context->analogFrames; n++) {
		// Change outputs every 512 samples
		if(sampleCounter < 512) {
			for(int k = 0; k < 8; k++) {
				if(k == invertChannel)
					context->analogOut[n*8 + gDACPinOrder[k]] = ANALOG_HIGH;
				else
					context->analogOut[n*8 + gDACPinOrder[k]] = 0;
			}
		}
		else {
			for(int k = 0; k < 8; k++) {
				if(k == invertChannel)
					context->analogOut[n*8 + gDACPinOrder[k]] = 0;
				else
					context->analogOut[n*8 + gDACPinOrder[k]] = ANALOG_HIGH;
			}
		}

		// Read after 256 samples: input should be low
		if(sampleCounter == 256) {
			for(int k = 0; k < 8; k++) {
				if(k == invertChannel) {
					if(context->analogIn[n*8 + k] < ANALOG_HIGH) {
						rt_printf("FAIL [output %d, input %d] -- output HIGH input %f (inverted)\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
						gLastErrorFrame = context->audioSampleCount + n;
					}
				}
				else {
					if(context->analogIn[n*8 + k] > ANALOG_LOW) {
						rt_printf("FAIL [output %d, input %d] -- output LOW --> input %f\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
						gLastErrorFrame = context->audioSampleCount + n;
					}
				}
			}
		}
		else if(sampleCounter == 768) {
			for(int k = 0; k < 8; k++) {
				if(k == invertChannel) {
					if(context->analogIn[n*8 + k] > ANALOG_LOW) {
						rt_printf("FAIL [output %d, input %d] -- output LOW input %f (inverted)\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
						gLastErrorFrame = context->audioSampleCount + n;
					}
				}
				else {
					if(context->analogIn[n*8 + k] < ANALOG_HIGH) {
						rt_printf("FAIL [output %d, input %d] -- output HIGH input %f\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
						gLastErrorFrame = context->audioSampleCount + n;
					}
				}
			}
		}

		if(++sampleCounter >= 1024) {
			sampleCounter = 0;
			invertChannel++;
			if(invertChannel >= 8)
				invertChannel = 0;
		}
	}
}

// cleanup() is called once at the end, after the audio has stopped.
// Release any resources that were allocated in setup().

void cleanup(BeagleRTContext *context, void *userData)
{

}