view projects/basic_network/render.cpp @ 54:d3f869b98147 ultra-staging

Udp transmission working (enough) for demo in Nottingham
author Giulio Moro <giuliomoro@yahoo.it>
date Mon, 08 Jun 2015 01:07:48 +0100
parents 4255ecbb9bec
children 3068421c0737
line wrap: on
line source
/*
 * render.cpp
 *
 *  Created on: Oct 24, 2014
 *      Author: parallels
 */

#include "../../include/RTAudioSettings.h"
#include "../../include/render.h"
#include <cmath>
//#include "../../include/client.h"
#include "../../include/RTAudio.h"	// to schedule lower prio parallel process
#include <rtdk.h>
#include <native/timer.h>
#include "../../include/PRU.h"
#include "../../include/UdpClient.h"

#define NETWORK_AUDIO_BUFFER_SIZE 400 //1400/4 //maximum payload for a UDP datagram over ethernet is 1472 bytes, I leave some headroom and divide by 4 to get the number of floats
struct networkAudio{
	int timestamp;
	int currentBuffer;
	int index;
	float buffers[2][NETWORK_AUDIO_BUFFER_SIZE];
	int doneOnTime;
	bool toBeSent;
	UdpClient udpClient;
};

float gFrequency;
float gPhase;
float gInverseSampleRate;
int gCount=0;
//networkData networkObject;
#define numNetAudio 3
networkAudio netAudio[numNetAudio];
extern PRU *gPRU;
AuxiliaryTask printIntervalTask;
AuxiliaryTask transmitReceiveAudioTask;
void transmitReceiveData(){ //transmit and receive asynchronous messages
//   	printf("transmitReceiveData auxiliary task has started\n");
//	while(!gShouldStop){
//		sendMessage(&networkObject);
//		receiveMessage(networkObject);
//		usleep(1000);
//	}
//	closeSockets();
}

void transmitReceiveAudio(){ //transmit and receive audio buffers
	for(int n=0;n<numNetAudio; n++){
		if(netAudio[n].toBeSent){
			netAudio[n].toBeSent=false;
			netAudio[n].udpClient.send(netAudio[n].buffers[!netAudio[n].currentBuffer],NETWORK_AUDIO_BUFFER_SIZE*sizeof(float));
			netAudio[n].doneOnTime=1;
		}
	}
}


// initialise_render() is called once before the audio rendering starts.
// Use it to perform any initialisation and allocation which is dependent
// on the period size or sample rate.
//
// userData holds an opaque pointer to a data structure that was passed
// in from the call to initAudio().
//
// Return true on success; returning false halts the program.
bool initialise_render(int numMatrixChannels, int numDigitalChannels, int numAudioChannels,
					   int numMatrixFramesPerPeriod,
					   int numAudioFramesPerPeriod,
					   float matrixSampleRate, float audioSampleRate,
					   void *userData, RTAudioSettings *settings)
{
	// Retrieve a parameter passed in from the initAudio() call
	gFrequency = *(float *)userData;

	gInverseSampleRate = 1.0 / audioSampleRate;
	gPhase = 0.0;

//	networkObject.counter=&gCount;
//	networkObject.variables[0]=&gFrequency;
//	networkObject.variables[1]=&gPhase;
//	networkObject.numVariables=2;
	for(int n=0; n<numNetAudio; n++){
		netAudio[n].doneOnTime=1;
		netAudio[n].index=0;
		netAudio[n].currentBuffer=0;
		netAudio[n].toBeSent=false;
		netAudio[n].udpClient.setPort(settings->transmitPort+n);
		netAudio[n].udpClient.setServer(settings->serverName);
	}
//	setupSockets(settings->receivePort, settings->transmitPort, settings->serverName);

//	transmitReceiveDataTask=createAuxiliaryTaskLoop(*transmitReceiveData, 10, "transmit-receive-data");
//	scheduleAuxiliaryTask(transmitReceiveDataTask); //here it does not work
	transmitReceiveAudioTask=createAuxiliaryTaskLoop(*transmitReceiveAudio, 98, "transmit-receive-audio");
	return true;
}

// render() is called regularly at the highest priority by the audio engine.
// Input and output are given from the audio hardware and the other
// ADCs and DACs (if available). If only audio is available, numMatrixFrames
// will be 0.

void render(int numAnalogFrames, int numAudioFrames, int numDigitalFrames, float *audioIn, float *audioOut,
		float *analogIn, float *analogOut, uint32_t *digital)
{
	for(int n = 0; n < numAudioFrames; n++) {
		float out = 0.7f * sinf(gPhase);
		gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
		if(gPhase > 2.0 * M_PI)
			gPhase -= 2.0 * M_PI;

//		for(int channel = 0; channel < gNumAudioChannels; channel++)
//			audioOut[n * gNumAudioChannels + channel] = audioIn[n * gNumAudioChannels + 0]+audioIn[n * gNumAudioChannels + 1];
		audioOut[n * gNumAudioChannels] = audioIn[n*gNumAudioChannels+0];
		audioOut[n * gNumAudioChannels+1]=out;
		if(0==gCount){
//			scheduleAuxiliaryTask(transmitReceiveDataTask);
		}
		for(int j=0; j<numNetAudio; j++){
			if(netAudio[j].index==(NETWORK_AUDIO_BUFFER_SIZE)){ // when the buffer is ready ...
				netAudio[j].toBeSent=true;
				netAudio[j].index=0; //reset the counter
				if(netAudio[j].doneOnTime==0)
					rt_printf("Network buffer underrun :-{\n");
				netAudio[j].timestamp=gCount;
				netAudio[j].currentBuffer=!netAudio[j].currentBuffer; //switch buffer
				netAudio[j].doneOnTime=0;
				scheduleAuxiliaryTask(transmitReceiveAudioTask); //send the buffer
			}
		}
		if((gCount&1)==0){
			netAudio[1].buffers[netAudio[1].currentBuffer][netAudio[1].index++]=analogRead(0,n/2)+audioOut[n*gNumAudioChannels + 0];
			netAudio[2].buffers[netAudio[2].currentBuffer][netAudio[2].index++]=analogRead(1,n/2)+audioOut[n*gNumAudioChannels + 0];
		}
		netAudio[0].buffers[netAudio[0].currentBuffer][netAudio[0].index++]=0.5*(out+audioOut[n*gNumAudioChannels + 0]);//copy channel 0 to the buffer
//		netAudio[1].buffers[netAudio[1].currentBuffer][netAudio[1].index++]=0.5*(out+audioOut[n*gNumAudioChannels + 0]);
//		netAudio[2].buffers[netAudio[2].currentBuffer][netAudio[2].index++]=0.5*(out+audioOut[n*gNumAudioChannels + 0]);
		gCount++;
	}
}

// cleanup_render() is called once at the end, after the audio has stopped.
// Release any resources that were allocated in initialise_render().

void cleanup_render()
{
//	closeSockets();
}