Mercurial > hg > beaglert
view core/ReceiveAudioThread.cpp @ 236:cb47043c8c28
Minor fixes
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Sun, 10 Apr 2016 11:40:18 +0200 |
parents | 6a23c07d0fbb |
children | e4392164b458 |
line wrap: on
line source
#include <ReceiveAudioThread.h> #ifdef USE_JUCE #else //initialise static members bool ReceiveAudioThread::staticConstructed=false; AuxiliaryTask ReceiveAudioThread::receiveDataTask=NULL; std::vector<ReceiveAudioThread *> ReceiveAudioThread::objAddrs(0); bool ReceiveAudioThread::threadRunning; bool ReceiveAudioThread::threadIsExiting; int ReceiveAudioThread::sleepTime; void receiveData(){ ReceiveAudioThread::run(); } void ReceiveAudioThread::staticConstructor(){ if(staticConstructed==true) return; staticConstructed=true; threadIsExiting=false; receiveDataTask=BeagleRT_createAuxiliaryTask(receiveData, 90, "receiveDataTask"); //TODO: allow different priorities } #endif /* USE_JUCE */ void ReceiveAudioThread::dealloc(){ free(buffer); buffer=NULL; free(stackBuffer); stackBuffer=NULL; } void ReceiveAudioThread::wrapWritePointer(){ //this is not quite a simple wrapping as you would do in a circular buffer, //as there is no guarantee the buffer will be full at all times, given that there must alwas be enough space at the end of it //to hold a full payload // lastValidPointer indicates the last pointer in the buffer containing valid data // if(writePointer+payloadLength+headerLength>bufferLength){ //if we are going to exceed the length of the buffer with the next reading // lastValidPointer=writePointer+headerLength; //remember where the last valid data are // for(int n=headerLength;n<lastValidPointer; n++){ // fprintf(fd2, "%f\n",buffer[n]); //DEBUG // } writePointer=0; //and reset to beginning of the buffer } } void ReceiveAudioThread::pushPayload(int startIndex){ //backup the payload samples that will be overwritten by the new header for(int n=0; n<headerLength; n++){ stackBuffer[n]=buffer[startIndex+n]; } } void ReceiveAudioThread::popPayload(int startIndex){ for(int n=0; n<headerLength; n++){ buffer[startIndex+n]=stackBuffer[n]; } } int ReceiveAudioThread::readUdpToBuffer(){ if(listening==false || bufferReady==false) return 0; if(writePointer<0) return 0; if(socket.waitUntilReady(true, waitForSocketTime)){// TODO: if waitForSocketTime here is >>5, the // destructor (always or sometimes) never actually gets called, despite run() returns ...see issue #1381 #ifdef USE_JUCE #else lastTime=rt_timer_read(); // rt_printf("lastTimeread= %llu\n", lastTime); #endif /* USE_JUCE */ pushPayload(writePointer); //backup headerLength samples. This could be skipped if writePointer==0 //read header+payload int numBytes=socket.read(buffer+writePointer, bytesToRead, true); //read without waiting. //TODO: (if using variable-length payload) validate the actual numBytes read against the size declared in the header if(numBytes<0){ printf("error numBytes1\n"); return -3; //TODO: something went wrong, you have to discard the rest of the packet! } if(numBytes==0){//TODO: this should not happen unless you actually receive a packet of size zero (is it at all possible?) // printf("received 0 bytes\n"); return 0; } if(numBytes != bytesToRead){ //this is equivalent to (numBytes<bytesToRead) printf("error numBytes2: %d\n", numBytes); return -4; //TODO: something went wrong, less bytes than expected in the payload. } if(channel!=(int)buffer[writePointer]){ // printf("I am channel %d, but I received data for channel %d\n", channel, (int)buffer[writePointer]); return -5; } if(buffer[writePointer+1]!=timestamp+1) printf("missing a timestamp: %d\n",timestamp+1); timestamp=buffer[writePointer+1]; // rt_printf("Received a message of length %d, it was on channel %d and timestamp %d\n", numBytes, (int)buffer[writePointer], (int)buffer[writePointer+1]); popPayload(writePointer); //restore headerLength payload samples. This could be skipped if writePointer==0 //even though we just wrote (payloadLength+headerLength) samples in the buffer, //we only increment by payloadLength. This way, next time a socket.read is performed, we will //backup the last headerLength samples that we just wrote and we will overwrite them with //the header from the new read. After parsing the header we will then restore the backed up samples. //This way we guarantee that, apart from the first headerLength samples, buffer is a circular buffer! writePointer+=payloadLength; wrapWritePointer(); return numBytes; } return 0; //timeout occurred } //USE_JUCE Thread(threadName), #ifdef USE_JUCE ReceiveAudioThread::ReceiveAudioThread(const String &threadName) : Thread(threadName), #else ReceiveAudioThread::ReceiveAudioThread() : #endif /* USE_JUCE */ socket(0), listening(false), bufferReady(false), buffer(NULL), stackBuffer(NULL), bufferLength(0), lastValidPointer(0), waitForSocketTime(5), #ifdef USE_JUCE threadPriority(5) #else threadPriority(88) #endif /* USE_JUCE */ {}; ReceiveAudioThread::~ReceiveAudioThread(){ #ifdef USE_JUCE stopThread(1000); #else stopThread(); while(threadRunning){ usleep(sleepTime*2); //wait for thread to stop std::cout<< "Waiting for receiveAudioTask to stop" << std::endl; } #endif /* USE_JUCE */ //TODO: check if thread stopped, otherwise kill it before dealloc dealloc(); } void ReceiveAudioThread::init(int aPort, int aSamplesPerBlock, int aChannel){ dealloc(); #ifdef USE_JUCE #else staticConstructor(); objAddrs.push_back(this);//TODO: this line should be in the constructor #endif /* USE_JUCE */ bindToPort(aPort); channel=aChannel; printf("Channel %d is receiving on port %d\n",aChannel, aPort); // fd=fopen("output.m","w"); //DEBUG // fprintf(fd,"var=["); //DEBUG headerLength=2; payloadLength=300; //TODO: make sure that payloadLength and headerLength are the same as the client is sending. bufferLength=10 * std::max(headerLength+(payloadLength*4), headerLength+(aSamplesPerBlock*4)); //there are many considerations that can be done here ... //We keep a headerLength padding at the beginning of the array to allow full reads from the socket buffer=(float*)malloc(sizeof(float)*bufferLength); if(buffer==NULL) // something wrong return; lastValidPointer=headerLength+ ((bufferLength-headerLength)/payloadLength)*payloadLength; memset(buffer,0,bufferLength*sizeof(float)); stackBuffer=(float*)malloc(sizeof(float)*headerLength); if(stackBuffer==NULL) // something wrong return; bufferReady=true; bytesToRead=sizeof(float)*(payloadLength + headerLength); writePointer=-1; readPointer=0; sleepTime=payloadLength/(float)44100 /4.0; //set sleepTime so that you do not check too often or too infrequently timestamp=0; #ifdef USE_JUCE startThread(threadPriority); #else //TODO: the thread cannot be started here at the moment because init() is called in setup(), where tasks cannot be scheduled #endif /* USE_JUCE */ } void ReceiveAudioThread::bindToPort(int aPort){ listening=socket.bindToPort(aPort); #ifdef USE_JUCE #else if(listening==false) //this condition is valid also for USE_JUCE, but we do not printf in USE_JUCE printf("Could not bind to port %d\n",aPort); #endif /* USE_JUCE */ } bool ReceiveAudioThread::isListening(){ return listening; } float* ReceiveAudioThread::getCurrentBuffer(int length){ // NOTE: this cannot work all the time unless samplesPerBuffer and payloadLength are multiples //TODO: make it return the number of samples actually available at the specified location if(isListening()==false || length>bufferLength) return NULL; readPointer+=length; if(readPointer>lastValidPointer){ readPointer=headerLength; } return buffer+(int)readPointer; }; int ReceiveAudioThread::getSamplesSrc(float *destination, int length, float samplingRateRatio, int numChannelsInDestination, int channelToWriteTo) { if (!(samplingRateRatio>0 && samplingRateRatio<=2)) return -2; if(isListening()==false) return -1; static int numCalls=0; if(writePointer<0 /*|| (numCalls&16383)==0*/){ //if writePointer has not been initalized yet ... #ifdef USE_JUCE #else //debug readPointer = headerLength; #endif /* USE_JUCE */ // this cumbersome line means: start writing at a position which is as close as possible // to the center of the buffer, but still is aligned to (payloadLength*x)+headerLength // thus allowing buffering to allow clock drift to go either way writePointer = headerLength + ((bufferLength-headerLength)/payloadLength/2)*payloadLength; // This will help keeping them in sync. //TODO: handle what happens when the remote stream is interrupted and then restarted printf("write pointer inited at: %d\n", writePointer); } numCalls++; if(length>lastValidPointer) { //not enough samples available, we fill the buffer with what is available, but the destination buffer will not be filled completely //at this very moment the other thread might be writing at most one payload into the buffer. //To avoid a race condition, we need to let alone the buffer where we are currently writing //as writing the payload also temporarily overwrites the previous headerLength samples, we need to account for them as well //TODO: This assumes that the writePointer and readPointer do not drift. When doing clock synchronization we will find out that it is not true! length=lastValidPointer-payloadLength-headerLength; if(length<0) //no samples available at all! return 0; } for(int n=0; n<length; n++){ destination[n*numChannelsInDestination+channelToWriteTo]=buffer[(int)(0.5+readPointer)];//simple ZOH non-interpolation (nearest neighbour) // fprintf(fd,"%f, %d, %f;\n",readPointer,writePointer,destination[n]); //DEBUG readPointer+=samplingRateRatio; if((int)(0.5+readPointer)>=lastValidPointer){ readPointer=readPointer-lastValidPointer+headerLength; } } return length; } int ReceiveAudioThread::getSamplesSrc(float *destination, int length, float samplingRateRatio){ return getSamplesSrc(destination, length, samplingRateRatio, 1,0); // TODO: rewriting this so that it does not call the override method we can save a multiply and add // for each sample. } bool ReceiveAudioThread::isBufferReady(){ return bufferReady; } #ifdef USE_JUCE #else void ReceiveAudioThread::startThread(){ BeagleRT_scheduleAuxiliaryTask(receiveDataTask); } void ReceiveAudioThread::stopThread(){ threadIsExiting=true; } bool ReceiveAudioThread::threadShouldExit(){ return(gShouldStop || threadIsExiting ); } RTIME ReceiveAudioThread::getLastTime(){ return lastTime; } #endif /* USE_JUCE */ int ReceiveAudioThread::getTimestamp(){ return timestamp; } void ReceiveAudioThread::run(){ // fd2=fopen("buffer.m","w"); //DEBUG // fprintf(fd2, "buf=["); //DEBUG threadRunning=true; int maxCount=10; int count=0; // Clean the socket from anything that is currently in it. #ifdef USE_JUCE // this is borrowed from BeagleRT's UdpServer class. int n; do { float waste; if(socket.waitUntilReady(true, 0)==0) break; n=socket.read((void*)&waste, sizeof(float), false); count++; if(n<0){ printf("error\n"); break; } printf("n: %d\n",n); } while (n>0 && (maxCount<=0 || count<maxCount)); #else for(unsigned int n=0; n<objAddrs.size(); n++){ count=objAddrs[n]->socket.empty(maxCount); } #endif /* USE_JUCE */ printf("socket emptied with %d reads\n", count); while(!threadShouldExit()){ //TODO: check that the socket buffer is empty before starting #ifdef USE_JUCE readUdpToBuffer(); // read into the oldBuffer sleep(sleepTime); #else for(unsigned int n=0; n<ReceiveAudioThread::objAddrs.size(); n++){ ReceiveAudioThread::objAddrs[n]->readUdpToBuffer(); } usleep(sleepTime); //TODO: use rt_task_sleep instead #endif /* USE_JUCE */ } threadRunning=false; printf("Thread is not running \n"); // fprintf(fd,"];readPointer,writePointer,lastValidPointer,destination]=deal(var(:,1), var(:,2), var(:,3), var(:,4));"); //DEBUG // fclose(fd);//DEBUG // fprintf(fd2,"];");//DEBUG // fclose(fd2); //DEBUG }