Mercurial > hg > beaglert
view projects/basic_network/render.cpp @ 37:b3661e68918c bbb_network
Closed bbb_network branch
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Mon, 11 May 2015 20:15:16 +0100 |
parents | 98aed580452a |
children | 4255ecbb9bec 3c3a1357657d |
line wrap: on
line source
/* * render.cpp * * Created on: Oct 24, 2014 * Author: parallels */ #include "../../include/RTAudioSettings.h" #include "../../include/render.h" #include <cmath> #include "../../include/client.h" #include "../../include/RTAudio.h" // to schedule lower prio parallel process #include <rtdk.h> float gFrequency; float gPhase; float gInverseSampleRate; int gCount=0; networkData networkObject; AuxiliaryTask transmitReceiveDataTask; void transmitReceiveData(){ printf("transmitReceiveData auxiliary task has started\n"); while(!gShouldStop){ sendMessage(networkObject); receiveMessage(networkObject); usleep(1000); } closeSockets(); } // initialise_render() is called once before the audio rendering starts. // Use it to perform any initialisation and allocation which is dependent // on the period size or sample rate. // // userData holds an opaque pointer to a data structure that was passed // in from the call to initAudio(). // // Return true on success; returning false halts the program. bool initialise_render(int numMatrixChannels, int numDigitalChannels, int numAudioChannels, int numMatrixFramesPerPeriod, int numAudioFramesPerPeriod, float matrixSampleRate, float audioSampleRate, void *userData, RTAudioSettings *settings) { // Retrieve a parameter passed in from the initAudio() call gFrequency = *(float *)userData; gInverseSampleRate = 1.0 / audioSampleRate; gPhase = 0.0; networkObject.counter=&gCount; networkObject.variables[0]=&gFrequency; networkObject.variables[1]=&gPhase; networkObject.numVariables=2; setupSockets(settings->receivePort, settings->transmitPort, settings->serverName); transmitReceiveDataTask=createAuxiliaryTaskLoop(*transmitReceiveData, 80, "transmit-receive-data"); //scheduleAuxiliaryTask(transmitReceiveDataTask); //here it does not work return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numMatrixFrames // will be 0. void render(int numAnalogFrames, int numAudioFrames, int numDigitalFrames, float *audioIn, float *audioOut, float *analogIn, float *analogOut, uint32_t *digital) { for(int n = 0; n < numAudioFrames; n++) { float out = 0.7f * sinf(gPhase); gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate; if(gPhase > 2.0 * M_PI) gPhase -= 2.0 * M_PI; for(int channel = 0; channel < gNumAudioChannels; channel++) audioOut[n * gNumAudioChannels + channel] = out; if(gCount==0){ scheduleAuxiliaryTask(transmitReceiveDataTask); } gCount++; } } // cleanup_render() is called once at the end, after the audio has stopped. // Release any resources that were allocated in initialise_render(). void cleanup_render() { }