Mercurial > hg > beaglert
view core/PRU.cpp @ 37:b3661e68918c bbb_network
Closed bbb_network branch
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Mon, 11 May 2015 20:15:16 +0100 |
parents | 182ae9367104 |
children | a9af130097e8 |
line wrap: on
line source
/* * PRU.cpp * * Code for communicating with the Programmable Realtime Unit (PRU) * on the BeagleBone AM335x series processors. The PRU loads and runs * a separate code image compiled from an assembly file. Here it is * used to handle audio and SPI ADC/DAC data. * * This code is specific to the PRU code in the assembly file; for example, * it uses certain GPIO resources that correspond to that image. * * Created on: May 27, 2014 * Author: andrewm */ #include "../include/PRU.h" #include "../include/prussdrv.h" #include "../include/pruss_intc_mapping.h" #include "../include/digital_gpio_mapping.h" #include "../include/GPIOcontrol.h" #include "../include/render.h" #include "../include/pru_rtaudio_bin.h" #include <iostream> #include <stdlib.h> #include <cstdio> #include <cerrno> #include <fcntl.h> #include <sys/mman.h> #include <unistd.h> // Xenomai-specific includes #include <sys/mman.h> #include <native/task.h> #include <native/timer.h> #include <rtdk.h> using namespace std; #define PRU_MEM_MCASP_OFFSET 0x2000 // Offset within PRU-SHARED RAM #define PRU_MEM_MCASP_LENGTH 0x2000 // Length of McASP memory, in bytes #define PRU_MEM_DAC_OFFSET 0x0 // Offset within PRU0 RAM #define PRU_MEM_DAC_LENGTH 0x2000 // Length of ADC+DAC memory, in bytes #define PRU_MEM_COMM_OFFSET 0x0 // Offset within PRU-SHARED RAM #define PRU_MEM_DIGITAL_OFFSET 0x1000 //Offset within PRU-SHARED RAM #define MEM_DIGITAL_BUFFER1_OFFSET 0x400 //Start pointer to DIGITAL_BUFFER1, which is 256 words. // 256 is the maximum number of frames allowed #define PRU_SHOULD_STOP 0 #define PRU_CURRENT_BUFFER 1 #define PRU_BUFFER_FRAMES 2 #define PRU_SHOULD_SYNC 3 #define PRU_SYNC_ADDRESS 4 #define PRU_SYNC_PIN_MASK 5 #define PRU_LED_ADDRESS 6 #define PRU_LED_PIN_MASK 7 #define PRU_FRAME_COUNT 8 #define PRU_USE_SPI 9 #define PRU_SPI_NUM_CHANNELS 10 #define PRU_USE_GPIO_ANALOG 11 short int digitalPins[NUM_DIGITALS]={ GPIO_NO_BIT_0, GPIO_NO_BIT_1, GPIO_NO_BIT_2, GPIO_NO_BIT_3, GPIO_NO_BIT_4, GPIO_NO_BIT_5, GPIO_NO_BIT_6, GPIO_NO_BIT_7, GPIO_NO_BIT_8, GPIO_NO_BIT_9, GPIO_NO_BIT_10, GPIO_NO_BIT_11, GPIO_NO_BIT_12, GPIO_NO_BIT_13, GPIO_NO_BIT_14, GPIO_NO_BIT_15, }; #define PRU_SAMPLE_INTERVAL_NS 11338 // 88200Hz per SPI sample = 11.338us #define GPIO0_ADDRESS 0x44E07000 #define GPIO1_ADDRESS 0x4804C000 #define GPIO_SIZE 0x198 #define GPIO_CLEARDATAOUT (0x190 / 4) #define GPIO_SETDATAOUT (0x194 / 4) #define TEST_PIN_GPIO_BASE GPIO0_ADDRESS // Use GPIO0(31) for debugging #define TEST_PIN_MASK (1 << 31) #define TEST_PIN2_MASK (1 << 26) #define USERLED3_GPIO_BASE GPIO1_ADDRESS // GPIO1(24) is user LED 3 #define USERLED3_PIN_MASK (1 << 24) const unsigned int PRU::kPruGPIODACSyncPin = 5; // GPIO0(5); P9-17 const unsigned int PRU::kPruGPIOADCSyncPin = 48; // GPIO1(16); P9-15 const unsigned int PRU::kPruGPIOTestPin = 60; // GPIO1(28); P9-12 const unsigned int PRU::kPruGPIOTestPin2 = 31; // GPIO0(31); P9-13 const unsigned int PRU::kPruGPIOTestPin3 = 26; // GPIO0(26); P8-14 extern int gShouldStop; extern int gRTAudioVerbose; // Constructor: specify a PRU number (0 or 1) PRU::PRU() : pru_number(0), running(false), spi_enabled(false), gpio_enabled(false), led_enabled(false), gpio_test_pin_enabled(false), spi_num_channels(0), xenomai_gpio_fd(-1), xenomai_gpio(0) { } // Destructor PRU::~PRU() { if(running) disable(); if(gpio_enabled) cleanupGPIO(); if(xenomai_gpio_fd >= 0) close(xenomai_gpio_fd); } // Prepare the GPIO pins needed for the PRU // If include_test_pin is set, the GPIO output // is also prepared for an output which can be // viewed on a scope. If include_led is set, // user LED 3 on the BBB is taken over by the PRU // to indicate activity int PRU::prepareGPIO(int use_spi, int use_digital, int include_test_pin, int include_led) { if(use_spi) { // Prepare DAC CS/ pin: output, high to begin if(gpio_export(kPruGPIODACSyncPin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export DAC sync pin\n"; } if(gpio_set_dir(kPruGPIODACSyncPin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on DAC sync pin\n"; return -1; } if(gpio_set_value(kPruGPIODACSyncPin, HIGH)) { if(gRTAudioVerbose) cout << "Couldn't set value on DAC sync pin\n"; return -1; } // Prepare ADC CS/ pin: output, high to begin if(gpio_export(kPruGPIOADCSyncPin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export ADC sync pin\n"; } if(gpio_set_dir(kPruGPIOADCSyncPin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on ADC sync pin\n"; return -1; } if(gpio_set_value(kPruGPIOADCSyncPin, HIGH)) { if(gRTAudioVerbose) cout << "Couldn't set value on ADC sync pin\n"; return -1; } spi_enabled = true; } if(use_digital){ printf("gNumDigitalChannels: %d;\n",gNumDigitalChannels); for(int i=0; i<gNumDigitalChannels; i++){ if(gpio_export(digitalPins[i])) { if(gRTAudioVerbose) cout << "Warning: couldn't export digital GPIO pin " << digitalPins[i] << "\n"; } if(gpio_set_dir(digitalPins[i], OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on digital GPIO pin " << digitalPins[i] << "\n"; return -1; } if(gpio_set_value(digitalPins[i], HIGH)) { if(gRTAudioVerbose) cout << "Couldn't set value on digital GPIO pin " << digitalPins[i] << "\n"; return -1; } } digital_enabled=true; } if(include_test_pin) { // Prepare GPIO test output (for debugging), low to begin if(gpio_export(kPruGPIOTestPin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export GPIO test pin\n"; } if(gpio_set_dir(kPruGPIOTestPin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on GPIO test pin\n"; return -1; } if(gpio_set_value(kPruGPIOTestPin, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on GPIO test pin\n"; return -1; } if(gpio_export(kPruGPIOTestPin2)) { if(gRTAudioVerbose) cout << "Warning: couldn't export GPIO test pin 2\n"; } if(gpio_set_dir(kPruGPIOTestPin2, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on GPIO test pin 2\n"; return -1; } if(gpio_set_value(kPruGPIOTestPin2, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on GPIO test pin 2\n"; return -1; } if(gpio_export(kPruGPIOTestPin3)) { if(gRTAudioVerbose) cout << "Warning: couldn't export GPIO test pin 3\n"; } if(gpio_set_dir(kPruGPIOTestPin3, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on GPIO test pin 3\n"; return -1; } if(gpio_set_value(kPruGPIOTestPin3, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on GPIO test pin 3\n"; return -1; } gpio_test_pin_enabled = true; } if(include_led) { // Turn off system function for LED3 so it can be reused by PRU led_set_trigger(3, "none"); led_enabled = true; } gpio_enabled = true; return 0; } // Clean up the GPIO at the end void PRU::cleanupGPIO() { if(!gpio_enabled) return; if(spi_enabled) { gpio_unexport(kPruGPIODACSyncPin); gpio_unexport(kPruGPIOADCSyncPin); } if(digital_enabled){ for(int i=0; i<gNumDigitalChannels; i++){ gpio_unexport(digitalPins[i]); } } if(gpio_test_pin_enabled) { gpio_unexport(kPruGPIOTestPin); gpio_unexport(kPruGPIOTestPin2); gpio_unexport(kPruGPIOTestPin3); } if(led_enabled) { // Set LED back to default eMMC status // TODO: make it go back to its actual value before this program, // rather than the system default led_set_trigger(3, "mmc1"); } gpio_enabled = gpio_test_pin_enabled = false; } // Initialise and open the PRU int PRU::initialise(int pru_num, int frames_per_buffer, int spi_channels, bool xenomai_test_pin) { uint32_t *pruMem = 0; if(!gpio_enabled) { rt_printf("initialise() called before GPIO enabled\n"); return 1; } pru_number = pru_num; /* Set number of SPI ADC / DAC channels to use. This implicitly * also determines the sample rate relative to the audio clock * (half audio clock for 8 channels, full audio clock for 4, * double audio clock for 2) */ spi_num_channels = spi_channels; /* Initialize structure used by prussdrv_pruintc_intc */ /* PRUSS_INTC_INITDATA is found in pruss_intc_mapping.h */ tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA; /* Allocate and initialize memory */ prussdrv_init(); if(prussdrv_open(pru_number == 0 ? PRU_EVTOUT_0 : PRU_EVTOUT_1)) { rt_printf("Failed to open PRU driver\n"); return 1; } /* Map PRU's INTC */ prussdrv_pruintc_init(&pruss_intc_initdata); spi_buffer_frames = frames_per_buffer; audio_buffer_frames = spi_buffer_frames * spi_num_channels / 4; digital_buffer_frames = audio_buffer_frames; /* Map PRU memory to pointers */ prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, (void **)&pruMem); pru_buffer_comm = (uint32_t *)&pruMem[PRU_MEM_COMM_OFFSET/sizeof(uint32_t)]; pru_buffer_audio_dac = (int16_t *)&pruMem[PRU_MEM_MCASP_OFFSET/sizeof(uint32_t)]; /* ADC memory starts 2(ch)*2(buffers)*bufsize samples later */ pru_buffer_audio_adc = &pru_buffer_audio_dac[4 * audio_buffer_frames]; if(spi_enabled) { prussdrv_map_prumem (pru_number == 0 ? PRUSS0_PRU0_DATARAM : PRUSS0_PRU1_DATARAM, (void **)&pruMem); pru_buffer_spi_dac = (uint16_t *)&pruMem[PRU_MEM_DAC_OFFSET/sizeof(uint32_t)]; /* ADC memory starts after N(ch)*2(buffers)*bufsize samples */ pru_buffer_spi_adc = &pru_buffer_spi_dac[2 * spi_num_channels * spi_buffer_frames]; } else { pru_buffer_spi_dac = pru_buffer_spi_adc = 0; } if(digital_enabled) { prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, (void **)&pruMem); pru_buffer_digital = (uint32_t *)&pruMem[PRU_MEM_DIGITAL_OFFSET/sizeof(uint32_t)]; } else { pru_buffer_digital = 0; } /* Set up flags */ pru_buffer_comm[PRU_SHOULD_STOP] = 0; pru_buffer_comm[PRU_CURRENT_BUFFER] = 0; pru_buffer_comm[PRU_BUFFER_FRAMES] = spi_buffer_frames; pru_buffer_comm[PRU_SHOULD_SYNC] = 0; pru_buffer_comm[PRU_SYNC_ADDRESS] = 0; pru_buffer_comm[PRU_SYNC_PIN_MASK] = 0; if(led_enabled) { pru_buffer_comm[PRU_LED_ADDRESS] = USERLED3_GPIO_BASE; pru_buffer_comm[PRU_LED_PIN_MASK] = USERLED3_PIN_MASK; } else { pru_buffer_comm[PRU_LED_ADDRESS] = 0; pru_buffer_comm[PRU_LED_PIN_MASK] = 0; } if(spi_enabled) { pru_buffer_comm[PRU_USE_SPI] = 1; pru_buffer_comm[PRU_SPI_NUM_CHANNELS] = spi_num_channels; } else { pru_buffer_comm[PRU_USE_SPI] = 0; pru_buffer_comm[PRU_SPI_NUM_CHANNELS] = 0; } if(digital_enabled) { pru_buffer_comm[PRU_USE_GPIO_ANALOG] = 1; pru_buffer_comm[NUM_DIGITALS] = spi_num_channels; } else { pru_buffer_comm[PRU_USE_GPIO_ANALOG] = 0; pru_buffer_comm[NUM_DIGITALS] = 0; } /* Clear ADC and DAC memory */ if(spi_enabled) { for(int i = 0; i < PRU_MEM_DAC_LENGTH / 2; i++) pru_buffer_spi_dac[i] = 0; } for(int i = 0; i < PRU_MEM_MCASP_LENGTH / 2; i++) pru_buffer_audio_dac[i] = 0; //TODO: maybe the lines below are to be deleted, as we removed the test code from pru_rtaudio.p ? /* If using GPIO test pin for Xenomai (for debugging), initialise the pointer now */ if(xenomai_test_pin && xenomai_gpio_fd < 0) { xenomai_gpio_fd = open("/dev/mem", O_RDWR); if(xenomai_gpio_fd < 0) rt_printf("Unable to open /dev/mem for GPIO test pin\n"); else { xenomai_gpio = (uint32_t *)mmap(0, GPIO_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, xenomai_gpio_fd, TEST_PIN_GPIO_BASE); if(xenomai_gpio == MAP_FAILED) { rt_printf("Unable to map GPIO address for test pin\n"); xenomai_gpio = 0; close(xenomai_gpio_fd); xenomai_gpio_fd = -1; } } } return 0; } // Run the code image in the specified file int PRU::start(char * const filename) { /* Clear any old interrupt */ if(pru_number == 0) prussdrv_pru_clear_event(PRU_EVTOUT_0, PRU0_ARM_INTERRUPT); else prussdrv_pru_clear_event(PRU_EVTOUT_1, PRU1_ARM_INTERRUPT); /* Load and execute binary on PRU */ if(filename[0] == '\0') { //if the string is empty, load the embedded code if(gRTAudioVerbose) rt_printf("Using embedded PRU code\n"); if(prussdrv_exec_code(pru_number, PRUcode, sizeof(PRUcode))) { rt_printf("Failed to execute PRU code\n"); return 1; } } else { if(gRTAudioVerbose) rt_printf("Using PRU code from %s\n",filename); if(prussdrv_exec_program(pru_number, filename)) { rt_printf("Failed to execute PRU code from %s\n", filename); return 1; } } running = true; return 0; } uint32_t empty[1024]={0x0}; // Main loop to read and write data from/to PRU void PRU::loop() { // Polling interval is 1/4 of the period RTIME sleepTime = PRU_SAMPLE_INTERVAL_NS * (spi_num_channels / 2) * spi_buffer_frames / 4; float *audioInBuffer, *audioOutBuffer; float *analogInBuffer, *analogOutBuffer, *lastAnalogOutFrame; uint32_t *digitalBuffer0, *digitalBuffer1, *lastDigitalBuffer; audioInBuffer = (float *)malloc(2 * audio_buffer_frames * sizeof(float)); audioOutBuffer = (float *)malloc(2 * audio_buffer_frames * sizeof(float)); analogInBuffer = (float *)malloc(spi_num_channels * spi_buffer_frames * sizeof(float)); analogOutBuffer = (float *)malloc(spi_num_channels * spi_buffer_frames * sizeof(float)); lastAnalogOutFrame = (float *)malloc(spi_num_channels * sizeof(float)); digitalBuffer0 = pru_buffer_digital; digitalBuffer1 = pru_buffer_digital+MEM_DIGITAL_BUFFER1_OFFSET/sizeof(uint32_t); digital_buffer_frames = digital_enabled ? audio_buffer_frames : 0; //TODO: find a more elegant solution for when the digital is disabled e.g.: // - embed in the digitalWrite/Read macros a check whether digital is enabled // - allocate some memory in ARM just to allow render() to run regardless. // in this case it can be digitalBuffer0 == digitalBuffer1 printf("digital_buffer_frames: %d;\n",digital_buffer_frames); lastDigitalBuffer = (uint32_t *)malloc(digital_buffer_frames*sizeof(uint32_t)); //temp buffer to hold previous states if(audioInBuffer == 0 || audioOutBuffer == 0) { rt_printf("Error: couldn't allocate audio buffers\n"); return; } if(analogInBuffer == 0 || analogOutBuffer == 0 || lastAnalogOutFrame == 0) { rt_printf("Error: couldn't allocate analog buffers\n"); return; } if(lastDigitalBuffer == 0) { rt_printf("Error: couldn't allocate digital buffers\n"); return; } while(!gShouldStop) { // Wait for PRU to move to buffer 1 while(pru_buffer_comm[PRU_CURRENT_BUFFER] == 0 && !gShouldStop) { rt_task_sleep(sleepTime); } if(gShouldStop) break; if(xenomai_gpio != 0) { // Set the test pin high xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN_MASK; } // Render from/to buffer 0 // Convert short (16-bit) samples to float for(unsigned int n = 0; n < 2 * audio_buffer_frames; n++) audioInBuffer[n] = (float)pru_buffer_audio_adc[n] / 32768.0; if(spi_enabled) { for(unsigned int n = 0; n < spi_num_channels * spi_buffer_frames; n++) analogInBuffer[n] = (float)pru_buffer_spi_adc[n] / 65536.0; //initialize the output buffer with the values that were in the last frame of the previous output for(int n = 0; n < spi_num_channels; n++){ for(unsigned int j = 0; j < spi_buffer_frames; j++){ analogOutBuffer[j*spi_buffer_frames + n] = lastAnalogOutFrame[n]; } } //use past digital values to initialize the array properly. //For each frame: //- pins previously set as outputs will keep the output value they had in the last frame of the previous buffer, //- pins previously set as inputs will carry the newly read input value if(digital_enabled){ for(unsigned int n = 0; n < digital_buffer_frames; n++){ uint16_t inputs=lastDigitalBuffer[n]&0xffff;//half-word, has 1 for inputs and 0 for outputs // printf("inputs: 0x%x\n",inputs); uint16_t outputs=~inputs; //half-word has 1 for outputs and 0 for inputs; digitalBuffer0[n]=(lastDigitalBuffer[digital_buffer_frames-1]&(outputs<<16))| //keep output values set in the last frame of the previous buffer (digitalBuffer0[n]&(inputs<<16)) | //inputs from current digitalBuffer0[n]; (lastDigitalBuffer[n]&(inputs)); //keep pin configuration from previous digitalBuffer1[n] // digitalBuffer0[n]=digitalBufferTemp[n]; //ignores inputs } } render(spi_buffer_frames, digital_buffer_frames, audio_buffer_frames, audioInBuffer, audioOutBuffer, analogInBuffer, analogOutBuffer, digitalBuffer0); //remember the content of the lastAnalogOutFrame for(int n = 0; n < spi_num_channels; n++){ lastAnalogOutFrame[n] = analogOutBuffer[spi_buffer_frames*(spi_buffer_frames-1) + n]; } for(unsigned int n = 0; n < spi_num_channels * spi_buffer_frames; n++) { int out = analogOutBuffer[n] * 65536.0; if(out < 0) out = 0; else if(out > 65535) out = 65535; pru_buffer_spi_dac[n] = (uint16_t)out; } if(digital_enabled){ // keep track of past digital values for(unsigned int n = 0; n < digital_buffer_frames; n++){ lastDigitalBuffer[n]=digitalBuffer0[n]; } } } else render(0, 0, audio_buffer_frames, audioInBuffer, audioOutBuffer, 0, 0, 0); // we still pass digitalBuffer, just it is unused // Convert float back to short for(unsigned int n = 0; n < 2 * audio_buffer_frames; n++) { int out = audioOutBuffer[n] * 32768.0; if(out < -32768) out = -32768; else if(out > 32767) out = 32767; pru_buffer_audio_dac[n] = (int16_t)out; } if(xenomai_gpio != 0) { // Set the test pin high xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN_MASK; } // Wait for PRU to move to buffer 0 while(pru_buffer_comm[PRU_CURRENT_BUFFER] != 0 && !gShouldStop) { rt_task_sleep(sleepTime); } if(gShouldStop) break; if(xenomai_gpio != 0) { // Set the test pin high xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN_MASK; } // Render from/to buffer 1 // Convert short (16-bit) samples to float for(unsigned int n = 0; n < 2 * audio_buffer_frames; n++) audioInBuffer[n] = (float)pru_buffer_audio_adc[n + audio_buffer_frames * 2] / 32768.0; if(spi_enabled) { //convert input values TODO: move to PRU for(unsigned int n = 0; n < spi_num_channels * spi_buffer_frames; n++){ analogInBuffer[n] = (float)pru_buffer_spi_adc[n + spi_buffer_frames * spi_num_channels] / 65536.0; } //initialize the output buffer with the values that were in the last frame of the previous output for(int n = 0; n < spi_num_channels; n++){ for(unsigned int j = 0; j < spi_buffer_frames; j++){ analogOutBuffer[j*spi_buffer_frames + n] = lastAnalogOutFrame[n]; } } if(digital_enabled){ for(unsigned int n = 0; n < digital_buffer_frames; n++){ uint16_t inputs=lastDigitalBuffer[n]&0xffff;//half-word, has 1 for inputs and 0 for outputs uint16_t outputs=~inputs; //half-word has 1 for outputs and one for inputs; digitalBuffer1[n]=(lastDigitalBuffer[digital_buffer_frames-1]&(outputs<<16))| //keep output values set in the last frame of the previous buffer (digitalBuffer1[n]&(inputs<<16)) | //inputs from current digitalBuffer1[n]; (lastDigitalBuffer[n]&(inputs)); //keep pin configuration from previous digitalBuffer1[n] // digitalBuffer1[n]=digitalBufferTemp[n]; //ignores inputs } } render(spi_buffer_frames, digital_buffer_frames, audio_buffer_frames, audioInBuffer, audioOutBuffer, analogInBuffer, analogOutBuffer, digitalBuffer1); //remember the content of the lastAnalogOutFrame for(int n = 0; n < spi_num_channels; n++){ lastAnalogOutFrame[n] = analogOutBuffer[spi_buffer_frames*(spi_buffer_frames-1) + n]; } for(unsigned int n = 0; n < spi_num_channels * spi_buffer_frames; n++) { int out = analogOutBuffer[n] * 65536.0; if(out < 0) out = 0; else if(out > 65535) out = 65535; pru_buffer_spi_dac[n + spi_buffer_frames * spi_num_channels] = (uint16_t)out; } if(digital_enabled){ // keep track of past digital values for(unsigned int n = 0; n < digital_buffer_frames; n++){ lastDigitalBuffer[n]=digitalBuffer1[n]; } } } else render(0, 0, audio_buffer_frames, audioInBuffer, audioOutBuffer, 0, 0, 0); // we still pass digitalBuffer, just it is unused // Convert float back to short for(unsigned int n = 0; n < 2 * audio_buffer_frames; n++) { int out = audioOutBuffer[n] * 32768.0; if(out < -32768) out = -32768; else if(out > 32767) out = 32767; pru_buffer_audio_dac[n + audio_buffer_frames * 2] = (int16_t)out; } if(xenomai_gpio != 0) { // Set the test pin high xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN_MASK; } } // Tell PRU to stop pru_buffer_comm[PRU_SHOULD_STOP] = 1; free(analogOutBuffer); free(audioInBuffer); free(audioOutBuffer); free(analogInBuffer); free(lastAnalogOutFrame); free(lastDigitalBuffer); } // Wait for an interrupt from the PRU indicate it is finished void PRU::waitForFinish() { if(!running) return; prussdrv_pru_wait_event (pru_number == 0 ? PRU_EVTOUT_0 : PRU_EVTOUT_1); if(pru_number == 0) prussdrv_pru_clear_event(PRU_EVTOUT_0, PRU0_ARM_INTERRUPT); else prussdrv_pru_clear_event(PRU_EVTOUT_1, PRU1_ARM_INTERRUPT); } // Turn off the PRU when done void PRU::disable() { /* Disable PRU and close memory mapping*/ prussdrv_pru_disable(pru_number); prussdrv_exit(); running = false; } // Debugging void PRU::setGPIOTestPin() { if(!xenomai_gpio) return; xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN2_MASK; } void PRU::clearGPIOTestPin() { if(!xenomai_gpio) return; xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN2_MASK; }