view projects/d-box/Biquad.cpp @ 269:ac8eb07afcf5

Oxygen text added to each render.cpp file for the default projects. Text includes project explanation from Wiki, edited in places. Empty project added as a default project. Doxyfile updated. Each of the project locations added to INPUT configuration option. Consider just watching the whole project file so all new projects are automatically pulled through.
author Robert Jack <robert.h.jack@gmail.com>
date Tue, 17 May 2016 15:40:16 +0100
parents 8a575ba3ab52
children
line wrap: on
line source
//
//  Biquad.cpp
//
//  Created by Nigel Redmon on 11/24/12
//  EarLevel Engineering: earlevel.com
//  Copyright 2012 Nigel Redmon
//
//  For a complete explanation of the Biquad code:
//  http://www.earlevel.com/main/2012/11/26/biquad-c-source-code/
//
//  License:
//
//  This source code is provided as is, without warranty.
//  You may copy and distribute verbatim copies of this document.
//  You may modify and use this source code to create binary code
//  for your own purposes, free or commercial.
//

#include <math.h>
#include "Biquad.h"
#include <iostream>

Biquad::Biquad() {
    type = bq_type_lowpass;
    a0 = 1.0;
    a1 = a2 = b1 = b2 = 0.0;
    Fc = 0.50;
    Q = 0.707;
    peakGain = 0.0;
    z1 = z2 = 0.0;
}

Biquad::Biquad(int type, double Fc, double Q, double peakGainDB) {
    setBiquad(type, Fc, Q, peakGainDB);
    z1 = z2 = 0.0;
}

Biquad::~Biquad() {
}

void Biquad::setType(int type) {
    this->type = type;
    calcBiquad();
}

void Biquad::setQ(double Q) {
    this->Q = Q;
    calcBiquad();
}

void Biquad::setFc(double Fc) {
    this->Fc = Fc;
    calcBiquad();
}

void Biquad::setPeakGain(double peakGainDB) {
    this->peakGain = peakGainDB;
    calcBiquad();
}
    
void Biquad::setBiquad(int type, double Fc, double Q, double peakGainDB) {
    this->type = type;
    this->Q = Q;
    this->Fc = Fc;
    startFc = Fc;
    startQ = Q;
    startPeakGain = peakGainDB;
    setPeakGain(peakGainDB);
}

void Biquad::calcBiquad(void) {
    double norm;
    double V = pow(10, fabs(peakGain) / 20.0);
    double K = tan(M_PI * Fc);
    switch (this->type) {
        case bq_type_lowpass:
            norm = 1 / (1 + K / Q + K * K);
            a0 = K * K * norm;
            a1 = 2 * a0;
            a2 = a0;
            b1 = 2 * (K * K - 1) * norm;
            b2 = (1 - K / Q + K * K) * norm;
            break;
            
        case bq_type_highpass:
            norm = 1 / (1 + K / Q + K * K);
            a0 = 1 * norm;
            a1 = -2 * a0;
            a2 = a0;
            b1 = 2 * (K * K - 1) * norm;
            b2 = (1 - K / Q + K * K) * norm;
            break;
            
        case bq_type_bandpass:
            norm = 1 / (1 + K / Q + K * K);
            a0 = K / Q * norm;
            a1 = 0;
            a2 = -a0;
            b1 = 2 * (K * K - 1) * norm;
            b2 = (1 - K / Q + K * K) * norm;
            break;
            
        case bq_type_notch:
            norm = 1 / (1 + K / Q + K * K);
            a0 = (1 + K * K) * norm;
            a1 = 2 * (K * K - 1) * norm;
            a2 = a0;
            b1 = a1;
            b2 = (1 - K / Q + K * K) * norm;
            break;
            
        case bq_type_peak:
            if (peakGain >= 0) {    // boost
                norm = 1 / (1 + 1/Q * K + K * K);
                a0 = (1 + V/Q * K + K * K) * norm;
                a1 = 2 * (K * K - 1) * norm;
                a2 = (1 - V/Q * K + K * K) * norm;
                b1 = a1;
                b2 = (1 - 1/Q * K + K * K) * norm;
            }
            else {    // cut
                norm = 1 / (1 + V/Q * K + K * K);
                a0 = (1 + 1/Q * K + K * K) * norm;
                a1 = 2 * (K * K - 1) * norm;
                a2 = (1 - 1/Q * K + K * K) * norm;
                b1 = a1;
                b2 = (1 - V/Q * K + K * K) * norm;
            }
            break;
        case bq_type_lowshelf:
            if (peakGain >= 0) {    // boost
                norm = 1 / (1 + sqrt(2) * K + K * K);
                a0 = (1 + sqrt(2*V) * K + V * K * K) * norm;
                a1 = 2 * (V * K * K - 1) * norm;
                a2 = (1 - sqrt(2*V) * K + V * K * K) * norm;
                b1 = 2 * (K * K - 1) * norm;
                b2 = (1 - sqrt(2) * K + K * K) * norm;
            }
            else {    // cut
                norm = 1 / (1 + sqrt(2*V) * K + V * K * K);
                a0 = (1 + sqrt(2) * K + K * K) * norm;
                a1 = 2 * (K * K - 1) * norm;
                a2 = (1 - sqrt(2) * K + K * K) * norm;
                b1 = 2 * (V * K * K - 1) * norm;
                b2 = (1 - sqrt(2*V) * K + V * K * K) * norm;
            }
            break;
        case bq_type_highshelf:
            if (peakGain >= 0) {    // boost
                norm = 1 / (1 + sqrt(2) * K + K * K);
                a0 = (V + sqrt(2*V) * K + K * K) * norm;
                a1 = 2 * (K * K - V) * norm;
                a2 = (V - sqrt(2*V) * K + K * K) * norm;
                b1 = 2 * (K * K - 1) * norm;
                b2 = (1 - sqrt(2) * K + K * K) * norm;
            }
            else {    // cut
                norm = 1 / (V + sqrt(2*V) * K + K * K);
                a0 = (1 + sqrt(2) * K + K * K) * norm;
                a1 = 2 * (K * K - 1) * norm;
                a2 = (1 - sqrt(2) * K + K * K) * norm;
                b1 = 2 * (K * K - V) * norm;
                b2 = (V - sqrt(2*V) * K + K * K) * norm;
            }
            break;
    }
    
    return;
}