view examples/04-Audio/measure-noisefloor/render.cpp @ 543:8f8809c77dda prerelease

updated basics, digital, instruments, extras examples
author chnrx <chris.heinrichs@gmail.com>
date Fri, 24 Jun 2016 13:19:52 +0100
parents 8fcfbfb32aa0
children cdabbaf3a252
line wrap: on
line source
/*
 ____  _____ _        _    
| __ )| ____| |      / \   
|  _ \|  _| | |     / _ \  
| |_) | |___| |___ / ___ \ 
|____/|_____|_____/_/   \_\

The platform for ultra-low latency audio and sensor processing

http://bela.io

A project of the Augmented Instruments Laboratory within the
Centre for Digital Music at Queen Mary University of London.
http://www.eecs.qmul.ac.uk/~andrewm

(c) 2016 Augmented Instruments Laboratory: Andrew McPherson,
  Astrid Bin, Liam Donovan, Christian Heinrichs, Robert Jack,
  Giulio Moro, Laurel Pardue, Victor Zappi. All rights reserved.

The Bela software is distributed under the GNU Lesser General Public License
(LGPL 3.0), available here: https://www.gnu.org/licenses/lgpl-3.0.txt
*/


#include <Bela.h>
#include <cmath>

int gBufferSize = 8192;

// Double buffers to hold samples for noise analysis
float *gReadBuffers[10], *gWriteBuffers[10];
float *gBuffers0[10], *gBuffers1[10];

int gWriteBufferPointers[10], gReadBufferPointers[10];

// Task to analyse and print results which would otherwise be too slow for render()
AuxiliaryTask gAnalysisTask;

void analyseResults();

// setup() is called once before the audio rendering starts.
// Use it to perform any initialisation and allocation which is dependent
// on the period size or sample rate.
//
// userData holds an opaque pointer to a data structure that was passed
// in from the call to initAudio().
//
// Return true on success; returning false halts the program.

bool setup(BelaContext *context, void *userData)
{	
	// Clear the filter data structures
	for(int i = 0; i < 10; i++) {
		gReadBufferPointers[i] = gWriteBufferPointers[i] = 0;
		gBuffers0[i] = new float[gBufferSize];
		gBuffers1[i] = new float[gBufferSize];		
		gWriteBuffers[i] = gBuffers0[i];
		gReadBuffers[i] = gBuffers1[i];
		if(gBuffers0[i] == 0 || gBuffers1[i] == 0) {
			rt_printf("Error allocating buffer %d\n", i);
			return false;
		}
	}
	
	gAnalysisTask = Bela_createAuxiliaryTask(analyseResults, 50, "bela-analyse-results");

	return true;
}

// render() is called regularly at the highest priority by the audio engine.
// Input and output are given from the audio hardware and the other
// ADCs and DACs (if available). If only audio is available, numMatrixFrames
// will be 0.

void render(BelaContext *context, void *userData)
{
	bool bufferIsFull = false;	// Whether at least one buffer has filled
	
	for(unsigned int n = 0; n < context->audioFrames; n++) {
		// Store audio inputs in buffer
		for(unsigned int ch = 0; ch < context->audioChannels; ch++) {
			if(gWriteBufferPointers[ch] < gBufferSize) {
				gWriteBuffers[ch][gWriteBufferPointers[ch]] = 
					context->audioIn[n * context->audioChannels + ch];
				gWriteBufferPointers[ch]++;
				if(gWriteBufferPointers[ch] >= gBufferSize)
					bufferIsFull = true;
			}
		}
	}
	
	if(context->analogChannels != 0) {
		for(unsigned int n = 0; n < context->analogFrames; n++) {
			// Store analog inputs in buffer, starting at channel 2
			for(unsigned int ch = 0; ch < context->analogChannels; ch++) {
				if(gWriteBufferPointers[ch + 2] < gBufferSize) {
					gWriteBuffers[ch + 2][gWriteBufferPointers[ch + 2]] = 
						context->analogIn[n * context->analogChannels + ch];
					gWriteBufferPointers[ch + 2]++;
					if(gWriteBufferPointers[ch + 2] >= gBufferSize)
						bufferIsFull = true;
				}
				
				// Set all analog outputs to halfway point so they can be more
				// easily measured for noise
				context->analogOut[n * context->analogChannels + ch] = 0.5;
			}
		}	
	}
	

	if(bufferIsFull) {
		// Swap buffers and reset write pointers
		for(int ch = 0; ch < 10; ch++) {
			gReadBufferPointers[ch] = gWriteBufferPointers[ch];
			gWriteBufferPointers[ch] = 0;
			
			if(gReadBuffers[ch] == gBuffers0[ch]) {
				gReadBuffers[ch] = gBuffers1[ch];
				gWriteBuffers[ch] = gBuffers0[ch];
			}
			else {
				gReadBuffers[ch] = gBuffers0[ch];
				gWriteBuffers[ch] = gBuffers1[ch];				
			}
		}
		
		Bela_scheduleAuxiliaryTask(gAnalysisTask);
	}
}

void analyseResults()
{
	rt_printf("\e[1;1H\e[2J");	// Command to clear the screen

	// Print the analysis results. channels 0-1 are audio, channels 2-9 are analog
	for(int ch = 0; ch < 10; ch++) {
		// Skip unused channels
		if(gReadBufferPointers[ch] == 0)
			continue;
		
		float mean = 0;
		for(int n = 0; n < gReadBufferPointers[ch]; n++) {
			mean += gReadBuffers[ch][n];
		}
		mean /= (float)gReadBufferPointers[ch];
		
		float rms = 0;
		for(int n = 0; n < gReadBufferPointers[ch]; n++) {
			rms += (gReadBuffers[ch][n] - mean) * (gReadBuffers[ch][n] - mean);
		}				
		rms = sqrtf(rms / (float)gReadBufferPointers[ch]);
		
		if(ch == 0)
			rt_printf("Audio In L:  ");
		else if(ch == 1)
			rt_printf("Audio In R:  ");
		else
			rt_printf("Analog In %d: ", ch - 2);
		
		rt_printf("Noise %6.1fdB    DC offset %6.4f (%6.1fdB)    window size: %d\n", 
					20.0f * log10f(rms),
					mean, 
					20.0f * log10f(fabsf(mean)),
					gReadBufferPointers[ch]);
	}
}

// cleanup() is called once at the end, after the audio has stopped.
// Release any resources that were allocated in setup().

void cleanup(BelaContext *context, void *userData)
{
	for(int i = 0; i < 10; i++) {
		delete gBuffers0[i];
		delete gBuffers1[i];
	}
}