Mercurial > hg > beaglert
view projects/filter_IIR/render.cpp @ 3:6810f166482f
_new IIR filter example
author | Victor Zappi <victor.zappi@qmul.ac.uk> |
---|---|
date | Thu, 06 Nov 2014 17:55:05 +0000 |
parents | |
children | 06f93bef7dd2 |
line wrap: on
line source
/* * render.cpp * * Created on: Oct 24, 2014 * Author: Andrew McPherson and Victor Zappi */ #include "../../include/render.h" #include "../../include/RTAudio.h" // to schedule lower prio parallel process #include <rtdk.h> #include <cmath> #include <stdio.h> #include "SampleData.h" SampleData gSampleData; // User defined structure to get complex data from main int gReadPtr; // Position of last read sample from file int gNumChannels; // filter vars float gLastX[2]; float gLastY[2]; double lb0, lb1, lb2, la1, la2 = 0.0; // communication vars between the 2 auxiliary tasks int gChangeCoeff = 0; int gFreqDelta = 0; void initialise_filter(float freq); void calculate_coeff(float cutFreq); bool initialise_aux_tasks(); // Task for handling the update of the frequencies using the matrix AuxiliaryTask gChangeCoeffTask; void check_coeff(); // Task for handling the update of the frequencies using the matrix AuxiliaryTask gInputTask; void read_input(); extern float gCutFreq; // initialise_render() is called once before the audio rendering starts. // Use it to perform any initialisation and allocation which is dependent // on the period size or sample rate. // // userData holds an opaque pointer to a data structure that was passed // in from the call to initAudio(). // // Return true on success; returning false halts the program. bool initialise_render(int numChannels, int numMatrixFramesPerPeriod, int numAudioFramesPerPeriod, float matrixSampleRate, float audioSampleRate, void *userData) { // Retrieve a parameter passed in from the initAudio() call gSampleData = *(SampleData *)userData; gReadPtr = -1; gNumChannels = numChannels; initialise_filter(200); // Initialise auxiliary tasks if(!initialise_aux_tasks()) return false; return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numMatrixFrames // will be 0. void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut, uint16_t *matrixIn, uint16_t *matrixOut) { for(int n = 0; n < numAudioFrames; n++) { float sample = 0; float out = 0; // If triggered... if(gReadPtr != -1) sample += gSampleData.samples[gReadPtr++]; // ...read each sample... if(gReadPtr >= gSampleData.sampleLen) gReadPtr = -1; out = lb0*sample+lb1*gLastX[0]+lb2*gLastX[1]-la1*gLastY[0]-la2*gLastY[1]; gLastX[1] = gLastX[0]; gLastX[0] = out; gLastY[1] = gLastY[0]; gLastY[0] = out; for(int channel = 0; channel < gNumChannels; channel++) audioOut[n * gNumChannels + channel] = out; // ...and put it in both left and right channel } // Request that the lower-priority tasks run at next opportunity scheduleAuxiliaryTask(gChangeCoeffTask); scheduleAuxiliaryTask(gInputTask); } // First calculation of coefficients void initialise_filter(float freq) { calculate_coeff(freq); } // Calculate the filter coefficients // second order low pass butterworth filter void calculate_coeff(float cutFreq) { // Initialise any previous state (clearing buffers etc.) // to prepare for calls to render() float sampleRate = 44100; double f = 2*M_PI*cutFreq/sampleRate; double denom = 4+2*sqrt(2)*f+f*f; lb0 = f*f/denom; lb1 = 2*lb0; lb2 = lb0; la1 = (2*f*f-8)/denom; la2 = (f*f+4-2*sqrt(2)*f)/denom; gLastX[0] = gLastX [1] = 0; gLastY[0] = gLastY[1] = 0; } // Initialise the auxiliary tasks // and print info bool initialise_aux_tasks() { if((gChangeCoeffTask = createAuxiliaryTaskLoop(&check_coeff, 90, "beaglert-check-coeff")) == 0) return false; if((gInputTask = createAuxiliaryTaskLoop(&read_input, 50, "beaglert-read-input")) == 0) return false; rt_printf("Press 'a' to trigger sample, 's' to stop\n"); rt_printf("Press 'z' to low down cut-off freq of 100 Hz, 'x' to raise it up\n"); rt_printf("Press 'q' to quit\n"); return true; } // Check if cut-off freq has been changed // and new coefficients are needed void check_coeff() { if(gChangeCoeff == 1) { gCutFreq += gFreqDelta; gCutFreq = gCutFreq < 0 ? 0 : gCutFreq; gCutFreq = gCutFreq > 22050 ? 22050 : gCutFreq; rt_printf("Cut-off frequency: %f\n", gCutFreq); calculate_coeff(gCutFreq); gChangeCoeff = 0; } } // This is a lower-priority call to periodically read keyboard input // and trigger samples. By placing it at a lower priority, // it has minimal effect on the audio performance but it will take longer to // complete if the system is under heavy audio load. void read_input() { // This is not a real-time task! // Cos getchar is a system call, not handled by Xenomai. // This task will be automatically down graded. char keyStroke = '.'; keyStroke = getchar(); while(getchar()!='\n'); // to read the first stroke switch (keyStroke) { case 'a': gReadPtr = 0; break; case 's': gReadPtr = -1; break; case 'z': gChangeCoeff = 1; gFreqDelta = -100; break; case 'x': gChangeCoeff = 1; gFreqDelta = 100; break; case 'q': gShouldStop = true; break; default: break; } } // cleanup_render() is called once at the end, after the audio has stopped. // Release any resources that were allocated in initialise_render(). void cleanup_render() { delete[] gSampleData.samples; }