Mercurial > hg > beaglert
view projects/analogDigitalDemo/render.cpp @ 39:638bc1ae2500 staging
Improved readibility of the DIGITAL code in the PRU, using register names instead of aliases and expanding some of the macros, removing unused macros. Binaries were not modified
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Wed, 13 May 2015 12:18:10 +0100 |
parents | 83baffda5786 |
children | a6d223473ea2 |
line wrap: on
line source
/* * * First assignment for ECS732 RTDSP, to implement a 2-way audio crossover * using the BeagleBone Black. * * Andrew McPherson and Victor Zappi * Queen Mary, University of London */ #include "../../include/render.h" #include <cmath> #include <rtdk.h> /* TASK: declare any global variables you need here */ // initialise_render() is called once before the audio rendering starts. // Use it to perform any initialisation and allocation which is dependent // on the period size or sample rate. // // userData holds an opaque pointer to a data structure that was passed // in from the call to initAudio(). // // Return true on success; returning false halts the program. int gNumDigitalFrames=0; bool initialise_render(int numAnalogChannels, int numDigitalChannels, int numAudioChannels, int numAnalogFramesPerPeriod, int numAudioFramesPerPeriod, float analogSampleRate, float audioSampleRate, void *userData, RTAudioSettings* settings) { gNumAnalogChannels=numAnalogChannels; gNumDigitalChannels=numDigitalChannels; return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numAnalogFrames // will be 0. long int gCountFrames=0; void render(int numAnalogFrames, int numDigitalFrames, int numAudioFrames, float *audioIn, float *audioOut, float *analogIn, float *analogOut, uint32_t *digital) /* we assume that gNumAnalogChannels=8, numAnalogFrames==8 and numDigitalFrames==numAudioFrames * */ { if((gCountFrames&31)==0){ //every 32 frames... //ANALOG channels analogWrite(0, 0, analogRead(0,0)); // read the input0 at frame0 and write it to output0 frame0. Using analogWrite will fill the rest of the buffer with the same value // The value at the last frame will persist through the successive buffers until is set again. // This effectively is a pass-through with downsampling by 32 times analogWrite(3, 0, 1.0); // write 1.0 to channel3 from frame0 to the end of the buffer analogWrite(3, 4, 0.1); // write 0.1 to channel3 from frame4 to the end of the buffer analogWriteFrame(3,6,0.2); //write 0.2 to channel3 only on frame 6 //this buffer for channel 3 will look like this: 1 1 1 1 0.1 0.1 0.2 0.1 //the next buffers for channel 3 will be filled up with 0.1 .... //DIGITAL channels digitalWrite(P8_07,0,GPIO_HIGH); //sets all the frames to HIGH for channel 0 digitalWriteFrame(P8_07,4,GPIO_LOW); //only frame 4 will be LOW for channel 0 // in this buffer the frames of channel 0 will look like this: 1 1 1 1 0 1 1 1 ...... 1 // in the next buffer each frame of channel 0 will be initialized to 1 (the last value of this buffer) digitalWrite(P8_08,0,GPIO_HIGH); digitalWrite(P8_08,2,GPIO_LOW); digitalWrite(P8_08,4,GPIO_HIGH); digitalWrite(P8_08,5,GPIO_LOW); setDigitalDirection(P9_16,0,GPIO_INPUT); // set channel 10 to input // in this buffer the frames of channel 1 will look like this: 1 1 0 0 1 0 0 0 .... 0 // in the next buffer each frame of channel 1 will be initialized to 0 (the last value of this buffer) } for(int n=0; n<numAudioFrames; n++){ for(int c=0; c<gNumAudioChannels; c++){ audioOut[n*gNumAudioChannels + c]=audioIn[n*gNumAudioChannels + c]; } //use digital channels 2-8 to create a 7 bit binary counter digital[n]=digital[n] & (~0b111111100); // set to zero (GPIO_OUTPUT) the bits in the lower word digital[n]=digital[n] & ((~0b111111100<<16) | 0xffff ); //initialize to zero the bits in the higher word (output value) digital[n]=digital[n] | ( ((gCountFrames&0b1111111)<<(16+2)) ) ; // set the bits in the higher word to the desired output value, keeping the lower word unchanged digitalWriteFrame(P8_29,n,digitalRead(P8_30,n)); // echo the input from from channel 15 to channel 14 digitalWriteFrame(P8_28,n,digitalRead(P9_16,n)); // echo the input from from channel 10 to channel 13 setDigitalDirection(P8_30,0,GPIO_INPUT); //set channel 15 to input gCountFrames++; } for(int n=0; n<numAnalogFrames; n++){ analogWriteFrame(1,n,(gCountFrames&8191)/8192.0); // writes a single frame. channel 1 is a ramp that follows gCountFrames analogWriteFrame(2,n,analogRead(2,n)); // writes a single frame. channel2 is just a passthrough // rt_printf("Analog out frame %d :",n); // for(int c=0; c<gNumAnalogChannels; c++) // rt_printf("%.1f ",analogOut[n*gNumAnalogChannels + c]); // rt_printf("\n"); } return; } // cleanup_render() is called once at the end, after the audio has stopped. // Release any resources that were allocated in initialise_render(). void cleanup_render() { /* TASK: * If you allocate any memory, be sure to release it here. * You may or may not need anything in this function, depending * on your implementation. */ }