Mercurial > hg > beaglert
view projects/heavy/samphold/SignalPhasor.h @ 160:5bcf04234f80 heavy-updated
- added -std=c99 to Makefile for user-supplied C files (required for heavy files)
- changed heavy core render.cpp file to use latest API and removed all redundant functions (e.g. foleyDesigner/touchkey stuff)
- use build_pd.sh to compile and run pd files (-h for usage instructions)
author | chnrx <chris.heinrichs@gmail.com> |
---|---|
date | Thu, 05 Nov 2015 18:58:26 +0000 |
parents | |
children |
line wrap: on
line source
/** * Copyright (c) 2014, 2015, Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef _HEAVY_SIGNAL_PHASOR_H_ #define _HEAVY_SIGNAL_PHASOR_H_ #include "HvBase.h" typedef struct SignalPhasor { #if HV_SIMD_AVX __m256 phase; // current phase __m256 inc; // phase increment #elif HV_SIMD_SSE __m128i phase; __m128i inc; #elif HV_SIMD_NEON uint32x4_t phase; int32x4_t inc; #else // HV_SIMD_NONE hv_uint32_t phase; hv_int32_t inc; #endif union { float f2sc; // float to step conversion (used for __phasor~f) hv_int32_t s; // step value (used for __phasor_k~f) } step; } SignalPhasor; hv_size_t sPhasor_init(SignalPhasor *o, double samplerate); hv_size_t sPhasor_k_init(SignalPhasor *o, float frequency, double samplerate); void sPhasor_k_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m); void sPhasor_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m); static inline void __hv_phasor_f(SignalPhasor *o, hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX __m256 p = _mm256_mul_ps(bIn, _mm256_set1_ps(o->step.f2sc)); // a b c d e f g h __m256 z = _mm256_setzero_ps(); // http://stackoverflow.com/questions/11906814/how-to-rotate-an-sse-avx-vector __m256 a = _mm256_permute_ps(p, _MM_SHUFFLE(2,1,0,3)); // d a b c h e f g __m256 b = _mm256_permute2f128_ps(a, a, 0x01); // h e f g d a b c __m256 c = _mm256_blend_ps(a, b, 0x10); // d a b c d e f g __m256 d = _mm256_blend_ps(c, z, 0x01); // 0 a b c d e f g __m256 e = _mm256_add_ps(p, d); // a (a+b) (b+c) (c+d) (d+e) (e+f) (f+g) (g+h) __m256 f = _mm256_permute_ps(e, _MM_SHUFFLE(1,0,3,2)); // (b+c) (c+d) a (a+b) (f+g) (g+h) (d+e) (e+f) __m256 g = _mm256_permute2f128_ps(f, f, 0x01); // (f+g) (g+h) (d+e) (e+f) (b+c) (c+d) a (a+b) __m256 h = _mm256_blend_ps(f, g, 0x33); // (b+c) (c+d) a (a+b) (b+c) (c+d) (d+e) (e+f) __m256 i = _mm256_blend_ps(h, z, 0x03); // 0 0 a (a+b) (b+c) (c+d) (d+e) (e+f) __m256 j = _mm256_add_ps(e, i); // a (a+b) (a+b+c) (a+b+c+d) (b+c+d+e) (c+d+e+f) (d+e+f+g) (e+f+g+h) __m256 k = _mm256_permute2f128_ps(j, z, 0x02); // 0 0 0 0 a (a+b) (a+b+c) (a+b+c+d) (b+c+d+e) __m256 m = _mm256_add_ps(j, k); // a (a+b) (a+b+c) (a+b+c+d) (a+b+c+d+e) (a+b+c+d+e+f) (a+b+c+d+e+f+g) (a+b+c+d+e+f+g+h) __m256 n = _mm256_or_ps(_mm256_andnot_ps( _mm256_set1_ps(-INFINITY), _mm256_add_ps(o->phase, m)), _mm256_set1_ps(1.0f)); *bOut = _mm256_sub_ps(n, _mm256_set1_ps(1.0f)); __m256 x = _mm256_permute_ps(n, _MM_SHUFFLE(3,3,3,3)); o->phase = _mm256_permute2f128_ps(x, x, 0x11); #elif HV_SIMD_SSE __m128i p = _mm_cvtps_epi32(_mm_mul_ps(bIn, _mm_set1_ps(o->step.f2sc))); // convert frequency to step p = _mm_add_epi32(p, _mm_slli_si128(p, 4)); // add incremental steps to phase (prefix sum) p = _mm_add_epi32(p, _mm_slli_si128(p, 8)); // http://stackoverflow.com/questions/10587598/simd-prefix-sum-on-intel-cpu?rq=1 p = _mm_add_epi32(o->phase, p); *bOut = _mm_sub_ps(_mm_castsi128_ps( _mm_or_si128(_mm_srli_epi32(p, 9), (__m128i) {0x3F8000003F800000L, 0x3F8000003F800000L})), _mm_set1_ps(1.0f)); o->phase = _mm_shuffle_epi32(p, _MM_SHUFFLE(3,3,3,3)); #elif HV_SIMD_NEON int32x4_t p = vcvtq_s32_f32(vmulq_n_f32(bIn, o->step.f2sc)); p = vaddq_s32(p, vextq_s32(vdupq_n_s32(0), p, 3)); // http://stackoverflow.com/questions/11259596/arm-neon-intrinsics-rotation p = vaddq_s32(p, vextq_s32(vdupq_n_s32(0), p, 2)); uint32x4_t pp = vaddq_u32(o->phase, vreinterpretq_u32_s32(p)); *bOut = vsubq_f32(vreinterpretq_f32_u32(vorrq_u32(vshrq_n_u32(pp, 9), vdupq_n_u32(0x3F800000))), vdupq_n_f32(1.0f)); o->phase = vdupq_n_u32(pp[3]); #else // HV_SIMD_NONE const hv_uint32_t p = (o->phase >> 9) | 0x3F800000; *bOut = *((float *) (&p)) - 1.0f; o->phase += ((int) (bIn * o->step.f2sc)); #endif } static inline void __hv_phasor_k_f(SignalPhasor *o, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_sub_ps(o->phase, _mm256_set1_ps(1.0f)); o->phase = _mm256_or_ps(_mm256_andnot_ps( _mm256_set1_ps(-INFINITY), _mm256_add_ps(o->phase, o->inc)), _mm256_set1_ps(1.0f)); #elif HV_SIMD_SSE *bOut = _mm_sub_ps(_mm_castsi128_ps( _mm_or_si128(_mm_srli_epi32(o->phase, 9), (__m128i) {0x3F8000003F800000L, 0x3F8000003F800000L})), _mm_set1_ps(1.0f)); o->phase = _mm_add_epi32(o->phase, o->inc); #elif HV_SIMD_NEON *bOut = vsubq_f32(vreinterpretq_f32_u32( vorrq_u32(vshrq_n_u32(o->phase, 9), vdupq_n_u32(0x3F800000))), vdupq_n_f32(1.0f)); o->phase = vaddq_u32(o->phase, vreinterpretq_u32_s32(o->inc)); #else // HV_SIMD_NONE const hv_uint32_t p = (o->phase >> 9) | 0x3F800000; *bOut = *((float *) (&p)) - 1.0f; o->phase += o->inc; #endif } #endif // _HEAVY_SIGNAL_PHASOR_H_