view core/RTAudio.cpp @ 68:59edd5780fef

Changed d-box code to run cleanly when built on board. Updated Makefile to add ne10 include path on board. Some extra docs in Utilities.h
author andrewm
date Fri, 17 Jul 2015 16:57:08 +0100
parents 3c3a1357657d
children f944d0b60fa8
line wrap: on
line source
/*
 *  RTAudio.cpp
 *
 *  Central control code for hard real-time audio on BeagleBone Black
 *  using PRU and Xenomai Linux extensions. This code began as part
 *  of the Hackable Instruments project (EPSRC) at Queen Mary University
 *  of London, 2013-14.
 *
 *  (c) 2014 Victor Zappi and Andrew McPherson
 *  Queen Mary University of London
 */


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <math.h>
#include <iostream>
#include <assert.h>
#include <vector>

// Xenomai-specific includes
#include <sys/mman.h>
#include <native/task.h>
#include <native/timer.h>
#include <native/intr.h>
#include <rtdk.h>

#include "../include/BeagleRT.h"
#include "../include/PRU.h"
#include "../include/I2c_Codec.h"
#include "../include/GPIOcontrol.h"
#include "../include/client.h"

// ARM interrupt number for PRU event EVTOUT7
#define PRU_RTAUDIO_IRQ		21

using namespace std;

// Data structure to keep track of auxiliary tasks we
// can schedule
typedef struct {
	RT_TASK task;
	void (*function)(void);
	char *name;
	int priority;
} InternalAuxiliaryTask;

const char gRTAudioThreadName[] = "beaglert-audio";
const char gRTAudioInterruptName[] = "beaglert-pru-irq";

// Real-time tasks and objects
RT_TASK gRTAudioThread;
#ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
RT_INTR gRTAudioInterrupt;
#endif
PRU *gPRU = 0;
I2c_Codec *gAudioCodec = 0;

vector<InternalAuxiliaryTask*> gAuxTasks;

// Flag which tells the audio task to stop
bool gShouldStop = false;

// general settings
char gPRUFilename[MAX_PRU_FILENAME_LENGTH];		// Path to PRU binary file (internal code if empty)_
int gRTAudioVerbose = 0;   						// Verbosity level for debugging
int gAmplifierMutePin = -1;
int gAmplifierShouldBeginMuted = 0;

// Context which holds all the audio/sensor data passed to the render routines
BeagleRTContext gContext;

// User data passed in from main()
void *gUserData;

// initAudio() prepares the infrastructure for running PRU-based real-time
// audio, but does not actually start the calculations.
// periodSize indicates the number of _sensor_ frames per period: the audio period size
// is twice this value. In total, the audio latency in frames will be 4*periodSize,
// plus any latency inherent in the ADCs and DACs themselves.
// useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
// numAnalogChannels indicates how many ADC and DAC channels to use.
// userData is an opaque pointer which will be passed through to the setup()
// function for application-specific use
//
// Returns 0 on success.

int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
{
	rt_print_auto_init(1);

	BeagleRT_setVerboseLevel(settings->verbose);
	strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
	gUserData = userData;

	// Initialise context data structure
	memset(&gContext, 0, sizeof(BeagleRTContext));

	if(gRTAudioVerbose) {
		cout << "Starting with period size " << settings->periodSize << "; ";
		if(settings->useAnalog)
			cout << "analog enabled\n";
		else
			cout << "analog disabled\n";
		cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
		cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
		if(settings->beginMuted)
			cout << "Beginning with speaker muted\n";
	}

	// Prepare GPIO pins for amplifier mute and status LED
	if(settings->ampMutePin >= 0) {
		gAmplifierMutePin = settings->ampMutePin;
		gAmplifierShouldBeginMuted = settings->beginMuted;

		if(gpio_export(settings->ampMutePin)) {
			if(gRTAudioVerbose)
				cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
		}
		if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
			if(gRTAudioVerbose)
				cout << "Couldn't set direction on amplifier mute pin\n";
			return -1;
		}
		if(gpio_set_value(settings->ampMutePin, LOW)) {
			if(gRTAudioVerbose)
				cout << "Couldn't set value on amplifier mute pin\n";
			return -1;
		}
	}

	// Limit the analog channels to sane values
	if(settings->numAnalogChannels >= 8)
		settings->numAnalogChannels = 8;
	else if(settings->numAnalogChannels >= 4)
		settings->numAnalogChannels = 4;
	else
		settings->numAnalogChannels = 2;

	// Sanity check the combination of channels and period size
	if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
		cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
		return 1;
	}
	if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
		cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
		return 1;
	}

	// Initialise the rendering environment: sample rates, frame counts, numbers of channels
	gContext.audioSampleRate = 44100.0;
	gContext.audioChannels = 2;

	if(settings->useAnalog) {
		gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;

		gContext.analogFrames = settings->periodSize;
		gContext.analogChannels = settings->numAnalogChannels;
		gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
	}
	else {
		gContext.audioFrames = settings->periodSize * 2;

		gContext.analogFrames = 0;
		gContext.analogChannels = 0;
		gContext.analogSampleRate = 0;
	}

	// For now, digital frame rate is equal to audio frame rate
	if(settings->useDigital) {
		gContext.digitalFrames = gContext.audioFrames;
		gContext.digitalSampleRate = gContext.audioSampleRate;
		gContext.digitalChannels = settings->numDigitalChannels;
	}
	else {
		gContext.digitalFrames = 0;
		gContext.digitalSampleRate = 0;
		gContext.digitalChannels = 0;
	}

	// Set flags based on init settings
	if(settings->interleave)
		gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
	if(settings->analogOutputsPersist)
		gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;

	// Use PRU for audio
	gPRU = new PRU(&gContext);
	gAudioCodec = new I2c_Codec();

	// Initialise the GPIO pins, including possibly the digital pins in the render routines
	if(gPRU->prepareGPIO(1, 1)) {
		cout << "Error: unable to prepare GPIO for PRU audio\n";
		return 1;
	}

	// Get the PRU memory buffers ready to go
	if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
		cout << "Error: unable to initialise PRU\n";
		return 1;
	}

	// Prepare the audio codec, which clocks the whole system
	if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
		cout << "Unable to open codec I2C\n";
		return 1;
	}
	if(gAudioCodec->initCodec()) {
		cout << "Error: unable to initialise audio codec\n";
		return 1;
	}

	// Set default volume levels
	BeagleRT_setDACLevel(settings->dacLevel);
	BeagleRT_setADCLevel(settings->adcLevel);
	BeagleRT_setHeadphoneLevel(settings->headphoneLevel);

	// Call the user-defined initialisation function
	if(!setup(&gContext, userData)) {
		cout << "Couldn't initialise audio rendering\n";
		return 1;
	}

	return 0;
}

// audioLoop() is the main function which starts the PRU audio code
// and then transfers control to the PRU object. The PRU object in
// turn will call the audio render() callback function every time
// there is new data to process.

void audioLoop(void *)
{
	if(gRTAudioVerbose==1)
		rt_printf("_________________Audio Thread!\n");

	// PRU audio
	assert(gAudioCodec != 0 && gPRU != 0);

	if(gAudioCodec->startAudio(0)) {
		rt_printf("Error: unable to start I2C audio codec\n");
		gShouldStop = 1;
	}
	else {
		if(gPRU->start(gPRUFilename)) {
			rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
			gShouldStop = 1;
		}
		else {
			// All systems go. Run the loop; it will end when gShouldStop is set to 1

			if(!gAmplifierShouldBeginMuted) {
				// First unmute the amplifier
				if(BeagleRT_muteSpeakers(0)) {
					if(gRTAudioVerbose)
						rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
				}
			}

#ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
			gPRU->loop(&gRTAudioInterrupt, gUserData);
#else
			gPRU->loop(0, gUserData);
#endif
			// Now clean up
			// gPRU->waitForFinish();
			gPRU->disable();
			gAudioCodec->stopAudio();
			gPRU->cleanupGPIO();
		}
	}

	if(gRTAudioVerbose == 1)
		rt_printf("audio thread ended\n");
}

// Create a calculation loop which can run independently of the audio, at a different
// (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
// priority should be generally be less than this.
// Returns an (opaque) pointer to the created task on success; 0 on failure
AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
{
	InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));

	// Attempt to create the task
	if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
		  cout << "Error: unable to create auxiliary task " << name << endl;
		  free(newTask);
		  return 0;
	}

	// Populate the rest of the data structure and store it in the vector
	newTask->function = functionToCall;
	newTask->name = strdup(name);
	newTask->priority = priority;

	gAuxTasks.push_back(newTask);

	return (AuxiliaryTask)newTask;
}

// Schedule a previously created auxiliary task. It will run when the priority rules next
// allow it to be scheduled.
void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
{
	InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;

	rt_task_resume(&taskToSchedule->task);
}

// Calculation loop that can be used for other tasks running at a lower
// priority than the audio thread. Simple wrapper for Xenomai calls.
// Treat the argument as containing the task structure
void auxiliaryTaskLoop(void *taskStruct)
{
	// Get function to call from the argument
	void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
	const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;

	// Wait for a notification
	rt_task_suspend(NULL);

	while(!gShouldStop) {
		// Then run the calculations
		auxiliary_function();

		// Wait for a notification
		rt_task_suspend(NULL);
	}

	if(gRTAudioVerbose == 1)
		rt_printf("auxiliary task %s ended\n", name);
}

// startAudio() should be called only after initAudio() successfully completes.
// It launches the real-time Xenomai task which runs the audio loop. Returns 0
// on success.

int BeagleRT_startAudio()
{
	// Create audio thread with high Xenomai priority
	if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
		  cout << "Error: unable to create Xenomai audio thread" << endl;
		  return -1;
	}

#ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
	// Create an interrupt which the audio thread receives from the PRU
	int result = 0;
	if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
		cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
		return -1;
	}
#endif

	// Start all RT threads
	if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
		  cout << "Error: unable to start Xenomai audio thread" << endl;
		  return -1;
	}

	// The user may have created other tasks. Start those also.
	vector<InternalAuxiliaryTask*>::iterator it;
	for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
		InternalAuxiliaryTask *taskStruct = *it;

		if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
			cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
			return -1;
		}
	}

	return 0;
}

// Stop the PRU-based audio from running and wait
// for the tasks to complete before returning.

void BeagleRT_stopAudio()
{
	// Tell audio thread to stop (if this hasn't been done already)
	gShouldStop = true;

	if(gRTAudioVerbose)
		cout << "Stopping audio...\n";

	// Now wait for threads to respond and actually stop...
	rt_task_join(&gRTAudioThread);

	// Stop all the auxiliary threads too
	vector<InternalAuxiliaryTask*>::iterator it;
	for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
		InternalAuxiliaryTask *taskStruct = *it;

		// Wake up each thread and join it
		rt_task_resume(&(taskStruct->task));
		rt_task_join(&(taskStruct->task));
	}
}

// Free any resources associated with PRU real-time audio
void BeagleRT_cleanupAudio()
{
	cleanup(&gContext, gUserData);

	// Clean up the auxiliary tasks
	vector<InternalAuxiliaryTask*>::iterator it;
	for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
		InternalAuxiliaryTask *taskStruct = *it;

		// Delete the task
		rt_task_delete(&taskStruct->task);

		// Free the name string and the struct itself
		free(taskStruct->name);
		free(taskStruct);
	}
	gAuxTasks.clear();

	// Delete the audio task and its interrupt
#ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
	rt_intr_delete(&gRTAudioInterrupt);
#endif
	rt_task_delete(&gRTAudioThread);

	if(gPRU != 0)
		delete gPRU;
	if(gAudioCodec != 0)
		delete gAudioCodec;

	if(gAmplifierMutePin >= 0)
		gpio_unexport(gAmplifierMutePin);
	gAmplifierMutePin = -1;
}

// Set the level of the DAC; affects all outputs (headphone, line, speaker)
// 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
int BeagleRT_setDACLevel(float decibels)
{
	if(gAudioCodec == 0)
		return -1;
	return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
}

// Set the level of the ADC
// 0dB is the maximum, -12dB is the minimum; 1.5dB steps
int BeagleRT_setADCLevel(float decibels)
{
	if(gAudioCodec == 0)
		return -1;
	return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
}

// Set the level of the onboard headphone amplifier; affects headphone
// output only (not line out or speaker)
// 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
int BeagleRT_setHeadphoneLevel(float decibels)
{
	if(gAudioCodec == 0)
		return -1;
	return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
}

// Mute or unmute the onboard speaker amplifiers
// mute == 0 means unmute; otherwise mute
// Returns 0 on success
int BeagleRT_muteSpeakers(int mute)
{
	int pinValue = mute ? LOW : HIGH;

	// Check that we have an enabled pin for controlling the mute
	if(gAmplifierMutePin < 0)
		return -1;

	return gpio_set_value(gAmplifierMutePin, pinValue);
}

// Set the verbosity level
void BeagleRT_setVerboseLevel(int level)
{
	gRTAudioVerbose = level;
}