Mercurial > hg > beaglert
view projects/analogDigitalDemo/render.cpp @ 87:567bd8f76714
Added TODO in analogDigitalDemo
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Sat, 18 Jul 2015 04:31:40 +0100 |
parents | 3c3a1357657d |
children | ac8eb07afcf5 |
line wrap: on
line source
/* * * Andrew McPherson and Victor Zappi * Queen Mary, University of London */ #include <BeagleRT.h> #include <Utilities.h> #include <cmath> #include <rtdk.h> // setup() is called once before the audio rendering starts. // Use it to perform any initialisation and allocation which is dependent // on the period size or sample rate. // // userData holds an opaque pointer to a data structure that was passed // in from the call to initAudio(). // // Return true on success; returning false halts the program. bool setup(BeagleRTContext *context, void *userData) { return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numAnalogFrames // will be 0. void render(BeagleRTContext *context, void *userData) /* we assume that gNumAnalogChannels=8, numAnalogFrames==8 and numDigitalFrames==numAudioFrames * */ { /* * TODO: as an exercise, you will need to set the pin mode before writing or reading the digital pins. */ if((context->audioSampleCount&31)==0){ //every 32 frames... //ANALOG channels analogWriteFrame(context, 0, 0, analogReadFrame(context, 0,0)); // read the input0 at frame0 and write it to output0 frame0. Using analogWrite will fill the rest of the buffer with the same value // The value at the last frame will persist through the successive buffers until is set again. // This effectively is a pass-through with downsampling by 32 times analogWriteFrame(context, 0, 3, 1.0); // write 1.0 to channel3 from frame0 to the end of the buffer analogWriteFrame(context, 4, 3, 0.1); // write 0.1 to channel3 from frame4 to the end of the buffer analogWriteFrameOnce(context, 6, 3, 0.2); //write 0.2 to channel3 only on frame 6 //this buffer for channel 3 will look like this: 1 1 1 1 0.1 0.1 0.2 0.1 //the next buffers for channel 3 will be filled up with 0.1 .... //DIGITAL channels digitalWriteFrame(context, 0, P8_07, GPIO_HIGH); //sets all the frames to HIGH for channel 0 digitalWriteFrameOnce(context, 4, P8_07, GPIO_LOW); //only frame 4 will be LOW for channel 0 // in this buffer the frames of channel 0 will look like this: 1 1 1 1 0 1 1 1 ...... 1 // in the next buffer each frame of channel 0 will be initialized to 1 (the last value of this buffer) digitalWriteFrame(context, 0, P8_08, GPIO_HIGH); digitalWriteFrame(context, 2, P8_08, GPIO_LOW); digitalWriteFrame(context, 4, P8_08, GPIO_HIGH); digitalWriteFrame(context, 5, P8_08, GPIO_LOW); pinModeFrame(context, 0, P9_16, GPIO_INPUT); // set channel 10 to input // in this buffer the frames of channel 1 will look like this: 1 1 0 0 1 0 0 0 .... 0 // in the next buffer each frame of channel 1 will be initialized to 0 (the last value of this buffer) } for(unsigned int n=0; n<context->audioFrames; n++){ for(unsigned int c=0; c<context->audioChannels; c++){ context->audioOut[n*context->audioChannels + c]=context->audioIn[n*context->audioChannels + c]; } //use digital channels 2-8 to create a 7 bit binary counter context->digital[n]=context->digital[n] & (~0b111111100); // set to zero (GPIO_OUTPUT) the bits in the lower word context->digital[n]=context->digital[n] & ((~0b111111100<<16) | 0xffff ); //initialize to zero the bits in the higher word (output value) context->digital[n]=context->digital[n] | ( ((context->audioSampleCount&0b1111111)<<(16+2)) ) ; // set the bits in the higher word to the desired output value, keeping the lower word unchanged digitalWriteFrame(context, n, P8_29, digitalReadFrame(context, n, P8_30)); // echo the input from from channel 15 to channel 14 digitalWriteFrame(context, n, P8_28, digitalReadFrame(context, n, P9_16)); // echo the input from from channel 10 to channel 13 pinModeFrame(context, 0, P8_30, 0); //set channel 15 to input } for(unsigned int n=0; n<context->analogFrames; n++){ analogWriteFrame(context, n, 1, (context->audioSampleCount&8191)/8192.0); // writes a single frame. channel 1 is a ramp that follows gCountFrames analogWriteFrame(context, n, 2, analogReadFrame(context, n, 2)); // writes a single frame. channel2 is just a passthrough // rt_printf("Analog out frame %d :",n); // for(int c=0; c<gNumAnalogChannels; c++) // rt_printf("%.1f ",analogOut[n*gNumAnalogChannels + c]); // rt_printf("\n"); } return; } // cleanup() is called once at the end, after the audio has stopped. // Release any resources that were allocated in setup(). void cleanup(BeagleRTContext *context, void *userData) { // Nothing to do here }