Mercurial > hg > beaglert
view projects/level_meter/render.cpp @ 253:33e0e4831763 prerelease
Started prerelease branch; updated PRU code to be able to run on either PRU.
author | andrewm |
---|---|
date | Mon, 16 May 2016 12:13:58 +0100 |
parents | 3a5823f7a11f |
children | 8d80eda512cd |
line wrap: on
line source
/* * render.cpp * * Created on: Oct 24, 2014 * Author: parallels */ #include <BeagleRT.h> #include <Utilities.h> #include <cmath> #define NUMBER_OF_SEGMENTS 10 // Two levels of audio: one follows current value, the other holds // peaks for longer float gAudioLocalLevel = 0, gAudioPeakLevel = 0; // Decay rates for detecting levels float gLocalDecayRate = 0.99, gPeakDecayRate = 0.999; // Thresholds for LEDs: set in setup() float gThresholds[NUMBER_OF_SEGMENTS + 1]; // High-pass filter on the input float gLastX[2] = {0}; float gLastY[2] = {0}; // These coefficients make a high-pass filter at 5Hz for 44.1kHz sample rate double gB0 = 0.99949640; double gB1 = -1.99899280; double gB2 = gB0; double gA1 = -1.99899254; double gA2 = 0.99899305; // setup() is called once before the audio rendering starts. // Use it to perform any initialisation and allocation which is dependent // on the period size or sample rate. // // userData holds an opaque pointer to a data structure that was passed // in from the call to initAudio(). // // Return true on success; returning false halts the program. bool setup(BeagleRTContext *context, void *userData) { // This project makes the assumption that the audio and digital // sample rates are the same. But check it to be sure! if(context->audioFrames != context->digitalFrames) { rt_printf("Error: this project needs the audio and digital sample rates to be the same.\n"); return false; } // Initialise threshold levels in -3dB steps. One extra for efficiency in render() // Level = 10^(dB/20) for(int i = 0; i < NUMBER_OF_SEGMENTS + 1; i++) { gThresholds[i] = powf(10.0f, (-1.0 * (NUMBER_OF_SEGMENTS - i)) * .05); } for(int i = 0; i < NUMBER_OF_SEGMENTS; i++) pinModeFrame(context, 0, i, OUTPUT); return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numMatrixFrames // will be 0. void render(BeagleRTContext *context, void *userData) { for(unsigned int n = 0; n < context->audioFrames; n++) { // Get average of audio input channels float sample = 0; for(unsigned int ch = 0; ch < context->audioChannels; ch++) { context->audioOut[n * context->audioChannels + ch] = context->audioIn[n * context->audioChannels + ch]; sample += context->audioIn[n * context->audioChannels + ch]; } // Do DC-blocking on the sum float out = gB0 * sample + gB1 * gLastX[0] + gB2 * gLastX[1] - gA1 * gLastY[0] - gA2 * gLastY[1]; gLastX[1] = gLastX[0]; gLastX[0] = sample; gLastY[1] = gLastY[0]; gLastY[0] = out; out = fabsf(out / (float)context->audioChannels); // Do peak detection: fast-responding local level if(out > gAudioLocalLevel) gAudioLocalLevel = out; else gAudioLocalLevel *= gLocalDecayRate; // Do peak detection: slow-responding peak level if(out > gAudioPeakLevel) gAudioPeakLevel = out; else { // Make peak decay slowly by only multiplying // every few samples if(((context->audioSampleCount + n) & 31) == 0) gAudioPeakLevel *= gPeakDecayRate; } // LED bargraph on digital outputs 0-9 for(int led = 0; led < NUMBER_OF_SEGMENTS; led++) { // All LEDs up to the local level light up. The LED // for the peak level also remains lit. int state = LOW; if(gAudioLocalLevel > gThresholds[led]) state = HIGH; else if(gAudioPeakLevel > gThresholds[led] && gAudioPeakLevel <= gThresholds[led + 1]) state = HIGH; // Write LED digitalWriteFrameOnce(context, n, led, state); } } } // cleanup() is called once at the end, after the audio has stopped. // Release any resources that were allocated in setup(). void cleanup(BeagleRTContext *context, void *userData) { }