Mercurial > hg > beaglert
view core/default_libpd_render.cpp @ 533:2ec36efb2c52 prerelease
Added tremolo to audio examples.
author | Robert Jack <robert.h.jack@gmail.com> |
---|---|
date | Thu, 23 Jun 2016 21:17:16 +0100 |
parents | 485913c58a61 |
children | bfcbeb437869 |
line wrap: on
line source
/* * render.cpp * * Created on: Oct 24, 2014 * Author: parallels */ #include <Bela.h> #include <DigitalChannelManager.h> #include <cmath> #include <I2c_Codec.h> #include <PRU.h> #include <stdio.h> #include <libpd/z_libpd.h> #include <libpd/s_stuff.h> #include <UdpServer.h> #include <Midi.h> #include <Scope.h> // if you are 100% sure of what value was used to compile libpd/puredata, then // you could #define gBufLength instead of getting it at runtime. It has proved to give some 0.3% // performance boost when it is 8 (thanks to vectorize optimizations I guess). int gBufLength; float* gInBuf; float* gOutBuf; void pdnoteon(int ch, int pitch, int vel) { printf("noteon: %d %d %d\n", ch, pitch, vel); } void Bela_printHook(const char *recv){ rt_printf("%s", recv); } #define PARSE_MIDI static Midi midi; static DigitalChannelManager dcm; void sendDigitalMessage(bool state, unsigned int delay, void* receiverName){ libpd_float((char*)receiverName, (float)state); // rt_printf("%s: %d\n", (char*)receiverName, state); } #define LIBPD_DIGITAL_OFFSET 11 // digitals are preceded by 2 audio and 8 analogs (even if using a different number of analogs) void Bela_messageHook(const char *source, const char *symbol, int argc, t_atom *argv){ if(strcmp(source, "bela_setDigital") == 0){ // symbol is the direction, argv[0] is the channel, argv[1] (optional) // is signal("sig" or "~") or message("message", default) rate bool isMessageRate = true; // defaults to message rate bool direction = 0; // initialize it just to avoid the compiler's warning bool disable = false; if(strcmp(symbol, "in") == 0){ direction = INPUT; } else if(strcmp(symbol, "out") == 0){ direction = OUTPUT; } else if(strcmp(symbol, "disable") == 0){ disable = true; } else { return; } if(argc == 0){ return; } else if (libpd_is_float(&argv[0]) == false){ return; } int channel = libpd_get_float(&argv[0]) - LIBPD_DIGITAL_OFFSET; if(disable == true){ dcm.unmanage(channel); return; } if(argc >= 2){ t_atom* a = &argv[1]; if(libpd_is_symbol(a)){ char *s = libpd_get_symbol(a); if(strcmp(s, "~") == 0 || strncmp(s, "sig", 3) == 0){ isMessageRate = false; } } } dcm.manage(channel, direction, isMessageRate); } } void Bela_floatHook(const char *source, float value){ // let's make this as optimized as possible for built-in digital Out parsing // the built-in digital receivers are of the form "bela_digitalOutXX" where XX is between 11 and 26 static int prefixLength = 15; // strlen("bela_digitalOut") if(strncmp(source, "bela_digitalOut", prefixLength)==0){ if(source[prefixLength] != 0){ //the two ifs are used instead of if(strlen(source) >= prefixLength+2) if(source[prefixLength + 1] != 0){ // quickly convert the suffix to integer, assuming they are numbers, avoiding to call atoi int receiver = ((source[prefixLength] - 48) * 10); receiver += (source[prefixLength+1] - 48); unsigned int channel = receiver - 11; // go back to the actual Bela digital channel number if(channel < 16){ //16 is the hardcoded value for the number of digital channels dcm.setValue(channel, value); } } } } } char receiverNames[16][21]={ {"bela_digitalIn11"},{"bela_digitalIn12"},{"bela_digitalIn13"},{"bela_digitalIn14"},{"bela_digitalIn15"}, {"bela_digitalIn16"},{"bela_digitalIn17"},{"bela_digitalIn18"},{"bela_digitalIn19"},{"bela_digitalIn20"}, {"bela_digitalIn21"},{"bela_digitalIn22"},{"bela_digitalIn23"},{"bela_digitalIn24"},{"bela_digitalIn25"}, {"bela_digitalIn26"} }; static unsigned int gAnalogChannelsInUse; static unsigned int gLibpdBlockSize; // 2 audio + (up to)8 analog + (up to) 16 digital + 4 scope outputs static const unsigned int gChannelsInUse = 30; //static const unsigned int gFirstAudioChannel = 0; static const unsigned int gFirstAnalogChannel = 2; static const unsigned int gFirstDigitalChannel = 10; static const unsigned int gFirstScopeChannel = 26; Scope scope; unsigned int gScopeChannelsInUse = 4; float* gScopeOut; bool setup(BelaContext *context, void *userData) { scope.setup(gScopeChannelsInUse, context->audioSampleRate); gScopeOut = new float[gScopeChannelsInUse]; // Check first of all if file exists. Will actually open it later. char file[] = "_main.pd"; char folder[] = "./"; unsigned int strSize = strlen(file) + strlen(folder) + 1; char* str = (char*)malloc(sizeof(char) * strSize); snprintf(str, strSize, "%s%s", folder, file); if(access(str, F_OK) == -1 ) { printf("Error file %s/%s not found. The %s file should be your main patch.\n", folder, file, file); return false; } // analog setup gAnalogChannelsInUse = context->analogChannels; // digital setup dcm.setCallback(sendDigitalMessage); if(context->digitalChannels > 0){ for(unsigned int ch = 0; ch < context->digitalChannels; ++ch){ dcm.setCallbackArgument(ch, receiverNames[ch]); } } midi.readFrom(0); midi.writeTo(0); #ifdef PARSE_MIDI midi.enableParser(true); #else midi.enableParser(false); #endif /* PARSE_MIDI */ // udpServer.bindToPort(1234); gLibpdBlockSize = libpd_blocksize(); // check that we are not running with a blocksize smaller than gLibPdBlockSize // We could still make it work, but the load would be executed unevenly between calls to render if(context->audioFrames < gLibpdBlockSize){ fprintf(stderr, "Error: minimum block size must be %d\n", gLibpdBlockSize); return false; } // set hooks before calling libpd_init libpd_set_printhook(Bela_printHook); libpd_set_floathook(Bela_floatHook); libpd_set_messagehook(Bela_messageHook); libpd_set_noteonhook(pdnoteon); //TODO: add hooks for other midi events and generate MIDI output appropriately libpd_init(); //TODO: ideally, we would analyse the ASCII of the patch file and find out which in/outs to use libpd_init_audio(gChannelsInUse, gChannelsInUse, context->audioSampleRate); gInBuf = libpd_get_sys_soundin(); gOutBuf = libpd_get_sys_soundout(); libpd_start_message(1); // one entry in list libpd_add_float(1.0f); libpd_finish_message("pd", "dsp"); gBufLength = max(gLibpdBlockSize, context->audioFrames); // bind your receivers here libpd_bind("bela_digitalOut11"); libpd_bind("bela_digitalOut12"); libpd_bind("bela_digitalOut13"); libpd_bind("bela_digitalOut14"); libpd_bind("bela_digitalOut15"); libpd_bind("bela_digitalOut16"); libpd_bind("bela_digitalOut17"); libpd_bind("bela_digitalOut18"); libpd_bind("bela_digitalOut19"); libpd_bind("bela_digitalOut20"); libpd_bind("bela_digitalOut21"); libpd_bind("bela_digitalOut22"); libpd_bind("bela_digitalOut23"); libpd_bind("bela_digitalOut24"); libpd_bind("bela_digitalOut25"); libpd_bind("bela_digitalOut26"); libpd_bind("bela_setDigital"); // open patch [; pd open file folder( void* patch = libpd_openfile(file, folder); if(patch == NULL){ printf("Error: file %s/%s is corrupted.\n", folder, file); return false; } return true; } // render() is called regularly at the highest priority by the audio engine. // Input and output are given from the audio hardware and the other // ADCs and DACs (if available). If only audio is available, numMatrixFrames // will be 0. void render(BelaContext *context, void *userData) { int num; // the safest thread-safe option to handle MIDI input is to process the MIDI buffer // from the audio thread. #ifdef PARSE_MIDI while((num = midi.getParser()->numAvailableMessages()) > 0){ static MidiChannelMessage message; message = midi.getParser()->getNextChannelMessage(); //message.prettyPrint(); // use this to print beautified message (channel, data bytes) switch(message.getType()){ case kmmNoteOn: { int noteNumber = message.getDataByte(0); int velocity = message.getDataByte(1); int channel = message.getChannel(); libpd_noteon(channel, noteNumber, velocity); break; } case kmmNoteOff: { /* PureData does not seem to handle noteoff messages as per the MIDI specs, * so that the noteoff velocity is ignored. Here we convert them to noteon * with a velocity of 0. */ int noteNumber = message.getDataByte(0); // int velocity = message.getDataByte(1); // would be ignored by Pd int channel = message.getChannel(); libpd_noteon(channel, noteNumber, 0); break; } case kmmControlChange: { int channel = message.getChannel(); int controller = message.getDataByte(0); int value = message.getDataByte(1); libpd_controlchange(channel, controller, value); break; } case kmmProgramChange: { int channel = message.getChannel(); int program = message.getDataByte(0); libpd_programchange(channel, program); break; } case kmmPolyphonicKeyPressure: { int channel = message.getChannel(); int pitch = message.getDataByte(0); int value = message.getDataByte(1); libpd_polyaftertouch(channel, pitch, value); break; } case kmmChannelPressure: { int channel = message.getChannel(); int value = message.getDataByte(0); libpd_aftertouch(channel, value); break; } case kmmPitchBend: { int channel = message.getChannel(); int value = ((message.getDataByte(1) << 7)| message.getDataByte(0)) - 8192; libpd_pitchbend(channel, value); break; } case kmmNone: case kmmAny: break; } } #else int input; while((input = midi.getInput()) >= 0){ libpd_midibyte(0, input); } #endif /* PARSE_MIDI */ static unsigned int numberOfPdBlocksToProcess = gBufLength / gLibpdBlockSize; for(unsigned int tick = 0; tick < numberOfPdBlocksToProcess; ++tick){ unsigned int audioFrameBase = gLibpdBlockSize * tick; unsigned int j; unsigned int k; float* p0; float* p1; for (j = 0, p0 = gInBuf; j < gLibpdBlockSize; j++, p0++) { for (k = 0, p1 = p0; k < context->audioChannels; k++, p1 += gLibpdBlockSize) { *p1 = audioRead(context, audioFrameBase + j, k); } } // then analogs // this loop resamples by ZOH, as needed, using m if(context->analogChannels == 8 ){ //hold the value for two frames for (j = 0, p0 = gInBuf; j < gLibpdBlockSize; j++, p0++) { for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstAnalogChannel; k < gAnalogChannelsInUse; ++k, p1 += gLibpdBlockSize) { unsigned int analogFrame = (audioFrameBase + j) / 2; *p1 = analogRead(context, analogFrame, k); } } } else if(context->analogChannels == 4){ //write every frame for (j = 0, p0 = gInBuf; j < gLibpdBlockSize; j++, p0++) { for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstAnalogChannel; k < gAnalogChannelsInUse; ++k, p1 += gLibpdBlockSize) { unsigned int analogFrame = audioFrameBase + j; *p1 = analogRead(context, analogFrame, k); } } } else if(context->analogChannels == 2){ //drop every other frame for (j = 0, p0 = gInBuf; j < gLibpdBlockSize; j++, p0++) { for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstAnalogChannel; k < gAnalogChannelsInUse; ++k, p1 += gLibpdBlockSize) { unsigned int analogFrame = (audioFrameBase + j) * 2; *p1 = analogRead(context, analogFrame, k); } } } // Bela digital input // note: in multiple places below we assume that the number of digitals is same as number of audio // digital in at message-rate dcm.processInput(&context->digital[audioFrameBase], gLibpdBlockSize); // digital in at signal-rate for (j = 0, p0 = gInBuf; j < gLibpdBlockSize; j++, p0++) { unsigned int digitalFrame = audioFrameBase + j; for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstDigitalChannel; k < 16; ++k, p1 += gLibpdBlockSize) { if(dcm.isSignalRate(k) && dcm.isInput(k)){ // only process input channels that are handled at signal rate *p1 = digitalRead(context, digitalFrame, k); } } } libpd_process_sys(); // process the block //digital out // digital out at signal-rate for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; ++j, ++p0) { unsigned int digitalFrame = (audioFrameBase + j); for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstDigitalChannel; k < context->digitalChannels; k++, p1 += gLibpdBlockSize) { if(dcm.isSignalRate(k) && dcm.isOutput(k)){ // only process output channels that are handled at signal rate digitalWriteOnce(context, digitalFrame, k, *p1 > 0.5); } } } // digital out at message-rate dcm.processOutput(&context->digital[audioFrameBase], gLibpdBlockSize); //audio for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; j++, p0++) { for (k = 0, p1 = p0; k < context->audioChannels; k++, p1 += gLibpdBlockSize) { audioWrite(context, audioFrameBase + j, k, *p1); } } //scope for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; ++j, ++p0) { for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstScopeChannel; k < gScopeChannelsInUse; k++, p1 += gLibpdBlockSize) { gScopeOut[k] = *p1; } scope.log(gScopeOut[0], gScopeOut[1], gScopeOut[2], gScopeOut[3]); } //analog if(context->analogChannels == 8){ for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; j += 2, p0 += 2) { //write every two frames unsigned int analogFrame = (audioFrameBase + j) / 2; for (k = 0, p1 = p0 + gLibpdBlockSize * gFirstAnalogChannel; k < gAnalogChannelsInUse; k++, p1 += gLibpdBlockSize) { analogWriteOnce(context, analogFrame, k, *p1); } } } else if(context->analogChannels == 4){ //write every frame for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; ++j, ++p0) { unsigned int analogFrame = (audioFrameBase + j); for (k = 0, p1 = p0 + gLibpdBlockSize * context->audioChannels; k < gAnalogChannelsInUse; k++, p1 += gLibpdBlockSize) { analogWriteOnce(context, analogFrame, k, *p1); } } } else if(context->analogChannels == 2){ //write every frame twice for (j = 0, p0 = gOutBuf; j < gLibpdBlockSize; j++, p0++) { for (k = 0, p1 = p0 + gLibpdBlockSize * context->audioChannels; k < gAnalogChannelsInUse; k++, p1 += gLibpdBlockSize) { int analogFrame = audioFrameBase * 2 + j * 2; analogWriteOnce(context, analogFrame, k, *p1); analogWriteOnce(context, analogFrame + 1, k, *p1); } } } } } // cleanup() is called once at the end, after the audio has stopped. // Release any resources that were allocated in setup(). void cleanup(BelaContext *context, void *userData) { delete [] gScopeOut; }