Mercurial > hg > beaglert
view projects/heavy/samphold/SignalPhasor.c @ 163:20b52283c7b4 heavy-updated
- added circular buffer pd/heavy example (works but process needs to be killed manually if launched via ssh?)
author | chnrx <chris.heinrichs@gmail.com> |
---|---|
date | Thu, 12 Nov 2015 15:55:30 +0000 |
parents | 5bcf04234f80 |
children |
line wrap: on
line source
/** * Copyright (c) 2014, 2015, Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "SignalPhasor.h" // input phase is in the range of [0,1]. It is independent of o->phase. #if HV_SIMD_AVX static void sPhasor_updatePhase(SignalPhasor *o, float p) { o->phase = _mm256_set_ps( p+1.0f+7.0f*o->step.f2sc, p+1.0f+6.0f*o->step.f2sc, p+1.0f+5.0f*o->step.f2sc, p+1.0f+4.0f*o->step.f2sc, p+1.0f+3.0f*o->step.f2sc, p+1.0f+2.0f*o->step.f2sc, p+1.0f+o->step.f2sc, p+1.0f); // ensure that o->phase is still in range [1,2] o->phase = _mm256_or_ps(_mm256_andnot_ps( _mm256_set1_ps(-INFINITY), o->phase), _mm256_set1_ps(1.0f)); #elif HV_SIMD_SSE static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) { o->phase = _mm_set_epi32(3*o->step.s+p, 2*o->step.s+p, o->step.s+p, p); #elif HV_SIMD_NEON static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) { o->phase = (uint32x4_t) {p, o->step.s+p, 2*o->step.s+p, 3*o->step.s+p}; #else // HV_SIMD_NONE static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) { o->phase = p; #endif } static void sPhasor_updateFrequency(SignalPhasor *o, float f, double r) { #if HV_SIMD_AVX o->step.f2sc = (float) (f/r); o->inc = _mm256_set1_ps((float) (8.0f*f/r)); sPhasor_updatePhase(o, o->phase[0]); #elif HV_SIMD_SSE o->step.s = (hv_int32_t) (f*(4294967296.0/r)); o->inc = _mm_set1_epi32(4*o->step.s); sPhasor_updatePhase(o, (hv_uint32_t) (o->phase[0] & 0xFFFFFFFFL)); #elif HV_SIMD_NEON o->step.s = (hv_int32_t) (f*(4294967296.0/r)); o->inc = vdupq_n_s32(4*o->step.s); sPhasor_updatePhase(o, vgetq_lane_u32(o->phase, 0)); #else // HV_SIMD_NONE o->step.s = (hv_int32_t) (f*(4294967296.0/r)); o->inc = o->step.s; // no need to update phase #endif } hv_size_t sPhasor_init(SignalPhasor *o, double samplerate) { #if HV_SIMD_AVX o->phase = _mm256_set1_ps(1.0f); o->inc = _mm256_setzero_ps(); o->step.f2sc = (float) (1.0/samplerate); #elif HV_SIMD_SSE o->phase = _mm_setzero_si128(); o->inc = _mm_setzero_si128(); o->step.f2sc = (float) (4294967296.0/samplerate); #elif HV_SIMD_NEON o->phase = vdupq_n_u32(0); o->inc = vdupq_n_s32(0); o->step.f2sc = (float) (4294967296.0/samplerate); #else // HV_SIMD_NONE o->phase = 0; o->inc = 0; o->step.f2sc = (float) (4294967296.0/samplerate); #endif return 0; } void sPhasor_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m) { if (letIn == 1) { if (msg_isFloat(m,0)) { float phase = msg_getFloat(m,0); while (phase < 0.0f) phase += 1.0f; // wrap phase to [0,1] while (phase > 1.0f) phase -= 1.0f; #if HV_SIMD_AVX sPhasor_updatePhase(o, phase); #else // HV_SIMD_SSE || HV_SIMD_NEON || HV_SIMD_NONE sPhasor_updatePhase(o, (hv_int32_t) (phase * 4294967296.0)); #endif } } } hv_size_t sPhasor_k_init(SignalPhasor *o, float frequency, double samplerate) { sPhasor_updateFrequency(o, frequency, samplerate); sPhasor_updatePhase(o, 0); return 0; } void sPhasor_k_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m) { if (msg_isFloat(m,0)) { switch (letIn) { case 0: sPhasor_updateFrequency(o, msg_getFloat(m,0), ctx_getSampleRate(_c)); break; case 1: { float phase = msg_getFloat(m,0); while (phase < 0.0f) phase += 1.0f; // wrap phase to [0,1] while (phase > 1.0f) phase -= 1.0f; #if HV_SIMD_AVX sPhasor_updatePhase(o, phase); #else // HV_SIMD_SSE || HV_SIMD_NEON || HV_SIMD_NONE sPhasor_updatePhase(o, (hv_uint32_t) (phase * 4294967296.0)); #endif break; } default: break; } } }