Mercurial > hg > beaglert
view projects/heavy/hello-world/HeavyMath.h @ 163:20b52283c7b4 heavy-updated
- added circular buffer pd/heavy example (works but process needs to be killed manually if launched via ssh?)
author | chnrx <chris.heinrichs@gmail.com> |
---|---|
date | Thu, 12 Nov 2015 15:55:30 +0000 |
parents | 5bcf04234f80 |
children |
line wrap: on
line source
/** * Copyright (c) 2014, 2015, Enzien Audio Ltd. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef _HEAVY_MATH_H_ #define _HEAVY_MATH_H_ #include "Utils.h" // https://software.intel.com/sites/landingpage/IntrinsicsGuide/ // https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/ARM-NEON-Intrinsics.html // http://codesuppository.blogspot.co.uk/2015/02/sse2neonh-porting-guide-and-header-file.html static inline void __hv_zero_f(hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_setzero_ps(); #elif HV_SIMD_SSE *bOut = _mm_setzero_ps(); #elif HV_SIMD_NEON *bOut = vdupq_n_f32(0.0f); #else // HV_SIMD_NONE *bOut = 0.0f; #endif } static inline void __hv_load_f(float *bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_load_ps(bIn); #elif HV_SIMD_SSE *bOut = _mm_load_ps(bIn); #elif HV_SIMD_NEON *bOut = vld1q_f32(bIn); #else // HV_SIMD_NONE *bOut = *bIn; #endif } static inline void __hv_store_f(float *bOut, hv_bInf_t bIn) { #if HV_SIMD_AVX _mm256_store_ps(bOut, bIn); #elif HV_SIMD_SSE _mm_store_ps(bOut, bIn); #elif HV_SIMD_NEON vst1q_f32(bOut, bIn); #else // HV_SIMD_NONE *bOut = bIn; #endif } static inline void __hv_log_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_log_f() not implemented #elif HV_SIMD_SSE #warning __hv_log_f() not implemented #elif HV_SIMD_NEON #warning __hv_log_f() not implemented #else // HV_SIMD_NONE *bOut = (bIn > 0.0f) ? hv_log_f(bIn) : 0.0f; #endif } static inline void __hv_log10_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_log10_f() not implemented #elif HV_SIMD_SSE #warning __hv_log10_f() not implemented #elif HV_SIMD_NEON #warning __hv_log10_f() not implemented #else // HV_SIMD_NONE *bOut = (bIn > 0.0f) ? hv_log10_f(bIn) : 0.0f; #endif } static inline void __hv_log2_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_log2_f() not implemented #elif HV_SIMD_SSE #warning __hv_log2_f() not implemented #elif HV_SIMD_NEON #warning __hv_log2_f() not implemented #else // HV_SIMD_NONE *bOut = (bIn > 0.0f) ? hv_log2_f(bIn) : 0.0f; #endif } // NOTE(mhroth): this is a pretty ghetto implementation static inline void __hv_cos_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_set_ps( hv_cos_f(bIn[7]), hv_cos_f(bIn[6]), hv_cos_f(bIn[5]), hv_cos_f(bIn[4]), hv_cos_f(bIn[3]), hv_cos_f(bIn[2]), hv_cos_f(bIn[1]), hv_cos_f(bIn[0])); #elif HV_SIMD_SSE *bOut = _mm_set_ps(hv_cos_f(bIn[3]), hv_cos_f(bIn[2]), hv_cos_f(bIn[1]), hv_cos_f(bIn[0])); #elif HV_SIMD_NEON *bOut = (float32x4_t) {hv_cos_f(bIn[0]), hv_cos_f(bIn[1]), hv_cos_f(bIn[2]), hv_cos_f(bIn[3])}; #else // HV_SIMD_NONE *bOut = hv_cos_f(bIn); #endif } static inline void __hv_acos_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_acos_f() not implemented #elif HV_SIMD_SSE #warning __hv_acos_f() not implemented #elif HV_SIMD_NEON #warning __hv_acos_f() not implemented #else // HV_SIMD_NONE *bOut = hv_acos_f(bIn); #endif } static inline void __hv_cosh_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_cosh_f() not implemented #elif HV_SIMD_SSE #warning __hv_cosh_f() not implemented #elif HV_SIMD_NEON #warning __hv_cosh_f() not implemented #else // HV_SIMD_NONE *bOut = hv_cosh_f(bIn); #endif } static inline void __hv_acosh_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_acosh_f() not implemented #elif HV_SIMD_SSE #warning __hv_acosh_f() not implemented #elif HV_SIMD_NEON #warning __hv_acosh_f() not implemented #else // HV_SIMD_NONE *bOut = hv_acosh_f(bIn); #endif } static inline void __hv_sin_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_sin_f() not implemented #elif HV_SIMD_SSE #warning __hv_sin_f() not implemented #elif HV_SIMD_NEON #warning __hv_sin_f() not implemented #else // HV_SIMD_NONE *bOut = hv_sin_f(bIn); #endif } static inline void __hv_asin_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_asin_f() not implemented #elif HV_SIMD_SSE #warning __hv_asin_f() not implemented #elif HV_SIMD_NEON #warning __hv_asin_f() not implemented #else // HV_SIMD_NONE *bOut = hv_asin_f(bIn); #endif } static inline void __hv_sinh_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_sinh_f() not implemented #elif HV_SIMD_SSE #warning __hv_sinh_f() not implemented #elif HV_SIMD_NEON #warning __hv_sinh_f() not implemented #else // HV_SIMD_NONE *bOut = hv_sinh_f(bIn); #endif } static inline void __hv_asinh_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_asinh_f() not implemented #elif HV_SIMD_SSE #warning __hv_asinh_f() not implemented #elif HV_SIMD_NEON #warning __hv_asinh_f() not implemented #else // HV_SIMD_NONE *bOut = hv_asinh_f(bIn); #endif } static inline void __hv_tan_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_tan_f() not implemented #elif HV_SIMD_SSE #warning __hv_tan_f() not implemented #elif HV_SIMD_NEON #warning __hv_tan_f() not implemented #else // HV_SIMD_NONE *bOut = hv_tan_f(bIn); #endif } static inline void __hv_atan_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_atan_f() not implemented #elif HV_SIMD_SSE #warning __hv_atan_f() not implemented #elif HV_SIMD_NEON #warning __hv_atan_f() not implemented #else // HV_SIMD_NONE *bOut = hv_atan_f(bIn); #endif } static inline void __hv_atan2_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_atan2_f() not implemented #elif HV_SIMD_SSE #warning __hv_atan2_f() not implemented #elif HV_SIMD_NEON #warning __hv_atan2_f() not implemented #else // HV_SIMD_NONE *bOut = hv_atan2_f(bIn0, bIn1); #endif } static inline void __hv_tanh_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_tanh_f() not implemented #elif HV_SIMD_SSE #warning __hv_tanh_f() not implemented #elif HV_SIMD_NEON #warning __hv_tanh_f() not implemented #else // HV_SIMD_NONE *bOut = hv_tanh_f(bIn); #endif } static inline void __hv_atanh_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_atanh_f() not implemented #elif HV_SIMD_SSE #warning __hv_atanh_f() not implemented #elif HV_SIMD_NEON #warning __hv_atanh_f() not implemented #else // HV_SIMD_NONE *bOut = hv_atanh_f(bIn); #endif } // NOTE(mhroth): use of sqrt is absolute and total MURDER. Make do with recipocal sqrt if possible!! static inline void __hv_sqrt_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_sqrt_ps(bIn); #elif HV_SIMD_SSE *bOut = _mm_sqrt_ps(bIn); #elif HV_SIMD_NEON #warning __hv_sqrt_f() numerical results may be inexact *bOut = vrecpeq_f32(vrsqrteq_f32(bIn)); #else // HV_SIMD_NONE *bOut = hv_sqrt_f(bIn); #endif } static inline void __hv_rsqrt_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_rsqrt_ps(bIn); #elif HV_SIMD_SSE *bOut = _mm_rsqrt_ps(bIn); #elif HV_SIMD_NEON #warning __hv_rsqrt_f() numerical results may be inexact *bOut = vrsqrteq_f32(bIn); #else // HV_SIMD_NONE *bOut = 1.0f/hv_sqrt_f(bIn); #endif } static inline void __hv_abs_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_andnot_ps(_mm256_set1_ps(-0.0f), bIn); #elif HV_SIMD_SSE *bOut = _mm_andnot_ps(_mm_set1_ps(-0.0f), bIn); // == 1 << 31 #elif HV_SIMD_NEON *bOut = vabsq_f32(bIn); #else // HV_SIMD_NONE *bOut = hv_abs_f(bIn); #endif } static inline void __hv_exp_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_exp_f() not implemented #elif HV_SIMD_SSE #warning __hv_exp_f() not implemented #elif HV_SIMD_NEON #warning __hv_exp_f() not implemented #else // HV_SIMD_NONE *bOut = hv_exp_f(bIn); #endif } static inline void __hv_ceil_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_ceil_ps(bIn); #elif HV_SIMD_SSE *bOut = _mm_ceil_ps(bIn); #elif HV_SIMD_NEON #if __ARM_ARCH >= 8 *bOut = vrndpq_f32(bIn); #else #warning A slow NEON implementation of __hv_ceil_f() is being used because the necessary intrinsic cannot be found. It is only available in ARMv8. *bOut = (float32x4_t) {hv_ceil_f(bIn[0]), hv_ceil_f(bIn[1]), hv_ceil_f(bIn[2]), hv_ceil_f(bIn[3])}; #endif // vrndpq_f32 #else // HV_SIMD_NONE *bOut = hv_ceil_f(bIn); #endif } static inline void __hv_floor_f(hv_bInf_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_floor_ps(bIn); #elif HV_SIMD_SSE *bOut = _mm_floor_ps(bIn); #elif HV_SIMD_NEON #if __ARM_ARCH >= 8 *bOut = vrndmq_f32(bIn); #else #warning A slow NEON implementation of __hv_floor_f() is being used because the necessary intrinsic cannot be found. It is only available in ARMv8. *bOut = (float32x4_t) {hv_floor_f(bIn[0]), hv_floor_f(bIn[1]), hv_floor_f(bIn[2]), hv_floor_f(bIn[3])}; #endif // vrndmq_f32 #else // HV_SIMD_NONE *bOut = hv_floor_f(bIn); #endif } // __add~f static inline void __hv_add_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_add_ps(bIn0, bIn1); #elif HV_SIMD_SSE *bOut = _mm_add_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vaddq_f32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = bIn0 + bIn1; #endif } // __add~i static inline void __hv_add_i(hv_bIni_t bIn0, hv_bIni_t bIn1, hv_bOuti_t bOut) { #if HV_SIMD_AVX __m128i x = _mm_add_epi32(_mm256_castsi256_si128(bIn0), _mm256_castsi256_si128(bIn1)); __m128i y = _mm_add_epi32(_mm256_extractf128_si256(bIn0, 1), _mm256_extractf128_si256(bIn1, 1)); *bOut = _mm256_insertf128_si256(_mm256_castsi128_si256(x), y, 1); #elif HV_SIMD_SSE *bOut = _mm_add_epi32(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vaddq_s32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = bIn0 + bIn1; #endif } // __sub~f static inline void __hv_sub_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_sub_ps(bIn0, bIn1); #elif HV_SIMD_SSE *bOut = _mm_sub_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vsubq_f32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = bIn0 - bIn1; #endif } // __mul~f static inline void __hv_mul_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_mul_ps(bIn0, bIn1); #elif HV_SIMD_SSE *bOut = _mm_mul_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vmulq_f32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = bIn0 * bIn1; #endif } // __*~i static inline void __hv_mul_i(hv_bIni_t bIn0, hv_bIni_t bIn1, hv_bOuti_t bOut) { #if HV_SIMD_AVX __m128i x = _mm_mullo_epi32(_mm256_castsi256_si128(bIn0), _mm256_castsi256_si128(bIn1)); __m128i y = _mm_mullo_epi32(_mm256_extractf128_si256(bIn0, 1), _mm256_extractf128_si256(bIn1, 1)); *bOut = _mm256_insertf128_si256(_mm256_castsi128_si256(x), y, 1); #elif HV_SIMD_SSE *bOut = _mm_mullo_epi32(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vmulq_s32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = bIn0 * bIn1; #endif } // __cast~if static inline void __hv_cast_if(hv_bIni_t bIn, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cvtepi32_ps(bIn); #elif HV_SIMD_SSE *bOut = _mm_cvtepi32_ps(bIn); #elif HV_SIMD_NEON *bOut = vcvtq_f32_s32(bIn); #else // HV_SIMD_NONE *bOut = (float) bIn; #endif } // __cast~fi static inline void __hv_cast_fi(hv_bInf_t bIn, hv_bOuti_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cvtps_epi32(bIn); #elif HV_SIMD_SSE *bOut = _mm_cvtps_epi32(bIn); #elif HV_SIMD_NEON *bOut = vcvtq_s32_f32(bIn); #else // HV_SIMD_NONE *bOut = (int) bIn; #endif } static inline void __hv_div_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_div_ps(bIn0, bIn1); #elif HV_SIMD_SSE *bOut = _mm_div_ps(bIn0, bIn1); #elif HV_SIMD_NEON #warning __hv_div_f() numerical results may be inexact *bOut = vmulq_f32(bIn0, vrecpeq_f32(bIn1)); #else // HV_SIMD_NONE *bOut = (bIn1 != 0.0f) ? (bIn0 / bIn1) : 0.0f; #endif } static inline void __hv_min_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_min_ps(bIn0, bIn1); #elif HV_SIMD_SSE *bOut = _mm_min_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vminq_f32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = hv_min_f(bIn0, bIn1); #endif } static inline void __hv_min_i(hv_bIni_t bIn0, hv_bIni_t bIn1, hv_bOuti_t bOut) { #if HV_SIMD_AVX __m128i x = _mm_min_epi32(_mm256_castsi256_si128(bIn0), _mm256_castsi256_si128(bIn1)); __m128i y = _mm_min_epi32(_mm256_extractf128_si256(bIn0, 1), _mm256_extractf128_si256(bIn1, 1)); *bOut = _mm256_insertf128_si256(_mm256_castsi128_si256(x), y, 1); #elif HV_SIMD_SSE *bOut = _mm_min_epi32(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vminq_s32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = hv_min_i(bIn0, bIn1); #endif } static inline void __hv_max_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_max_ps(bIn0, bIn1); #elif HV_SIMD_SSE *bOut = _mm_max_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vmaxq_f32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = hv_max_f(bIn0, bIn1); #endif } static inline void __hv_max_i(hv_bIni_t bIn0, hv_bIni_t bIn1, hv_bOuti_t bOut) { #if HV_SIMD_AVX __m128i x = _mm_max_epi32(_mm256_castsi256_si128(bIn0), _mm256_castsi256_si128(bIn1)); __m128i y = _mm_max_epi32(_mm256_extractf128_si256(bIn0, 1), _mm256_extractf128_si256(bIn1, 1)); *bOut = _mm256_insertf128_si256(_mm256_castsi128_si256(x), y, 1); #elif HV_SIMD_SSE *bOut = _mm_max_epi32(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vmaxq_s32(bIn0, bIn1); #else // HV_SIMD_NONE *bOut = hv_max_i(bIn0, bIn1); #endif } static inline void __hv_pow_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_set_ps( hv_pow_f(bIn0[7], bIn1[7]), hv_pow_f(bIn0[6], bIn1[6]), hv_pow_f(bIn0[5], bIn1[5]), hv_pow_f(bIn0[4], bIn1[4]), hv_pow_f(bIn0[3], bIn1[3]), hv_pow_f(bIn0[2], bIn1[2]), hv_pow_f(bIn0[1], bIn1[1]), hv_pow_f(bIn0[0], bIn1[0])); #elif HV_SIMD_SSE *bOut = _mm_set_ps( hv_pow_f(bIn0[3], bIn1[3]), hv_pow_f(bIn0[2], bIn1[2]), hv_pow_f(bIn0[1], bIn1[1]), hv_pow_f(bIn0[0], bIn1[0])); #elif HV_SIMD_NEON *bOut = (float32x4_t) { hv_pow_f(bIn0[0], bIn1[0]), hv_pow_f(bIn0[1], bIn1[1]), hv_pow_f(bIn0[2], bIn1[2]), hv_pow_f(bIn0[3], bIn1[3])}; #else // HV_SIMD_NONE *bOut = hv_pow_f(bIn0, bIn1); #endif } static inline void __hv_gt_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cmp_ps(bIn0, bIn1, _CMP_GT_OQ); #elif HV_SIMD_SSE *bOut = _mm_cmpgt_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vreinterpretq_f32_u32(vcgtq_f32(bIn0, bIn1)); #else // HV_SIMD_NONE *bOut = (bIn0 > bIn1) ? 1.0f : 0.0f; #endif } static inline void __hv_gte_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cmp_ps(bIn0, bIn1, _CMP_GE_OQ); #elif HV_SIMD_SSE *bOut = _mm_cmpge_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vreinterpretq_f32_u32(vcgeq_f32(bIn0, bIn1)); #else // HV_SIMD_NONE *bOut = (bIn0 >= bIn1) ? 1.0f : 0.0f; #endif } static inline void __hv_lt_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cmp_ps(bIn0, bIn1, _CMP_LT_OQ); #elif HV_SIMD_SSE *bOut = _mm_cmplt_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vreinterpretq_f32_u32(vcltq_f32(bIn0, bIn1)); #else // HV_SIMD_NONE *bOut = (bIn0 < bIn1) ? 1.0f : 0.0f; #endif } static inline void __hv_lte_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cmp_ps(bIn0, bIn1, _CMP_LE_OQ); #elif HV_SIMD_SSE *bOut = _mm_cmple_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vreinterpretq_f32_u32(vcleq_f32(bIn0, bIn1)); #else // HV_SIMD_NONE *bOut = (bIn0 <= bIn1) ? 1.0f : 0.0f; #endif } static inline void __hv_neq_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_cmp_ps(bIn0, bIn1, _CMP_NEQ_OQ); #elif HV_SIMD_SSE *bOut = _mm_cmpneq_ps(bIn0, bIn1); #elif HV_SIMD_NEON *bOut = vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(bIn0, bIn1))); #else // HV_SIMD_NONE *bOut = (bIn0 != bIn1) ? 1.0f : 0.0f; #endif } static inline void __hv_xor_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX #warning __hv_xor_f() not implemented #elif HV_SIMD_SSE #warning __hv_xor_f() not implemented #elif HV_SIMD_NEON #warning __hv_xor_f() not implemented #else // HV_SIMD_NONE *bOut = (float) (((int) bIn0) ^ ((int) bIn1)); #endif } static inline void __hv_and_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { #if HV_SIMD_AVX *bOut = _mm256_and_ps(bIn1, bIn0); #elif HV_SIMD_SSE *bOut = _mm_and_ps(bIn1, bIn0); #elif HV_SIMD_NEON *bOut = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(bIn1), vreinterpretq_u32_f32(bIn0))); #else // HV_SIMD_NONE if (bIn0 == 0.0f || bIn1 == 0.0f) *bOut = 0.0f; else if (bIn0 == 1.0f) *bOut = bIn1; else if (bIn1 == 1.0f) *bOut = bIn0; else hv_assert(0); // TODO(mhroth): floating point & is pretty much a bad idea, only used for if~ #endif } // bOut = (bIn0 * bIn1) + bIn2 static inline void __hv_fma_f(hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bInf_t bIn2, hv_bOutf_t bOut) { #if HV_SIMD_AVX #if HV_SIMD_FMA *bOut = _mm256_fmadd_ps(bIn0, bIn1, bIn2); #else *bOut = _mm256_add_ps(_mm256_mul_ps(bIn0, bIn1), bIn2); #endif // HV_SIMD_FMA #elif HV_SIMD_SSE #if HV_SIMD_FMA *bOut = _mm_fmadd_ps(bIn0, bIn1, bIn2); #else *bOut = _mm_add_ps(_mm_mul_ps(bIn0, bIn1), bIn2); #endif // HV_SIMD_FMA #elif HV_SIMD_NEON #if __ARM_ARCH >= 8 *bOut = vfmaq_f32(bIn2, bIn0, bIn1); #else // NOTE(mhroth): it turns out, fma SUUUUCKS on lesser ARM architectures // But in fact ideally fma would be disabled in ir2c for ARM architectures. // LLVM does a much better job handling fma than we do. *bOut = vaddq_f32(vmulq_f32(bIn0, bIn1), bIn2); #endif #else // HV_SIMD_NONE *bOut = hv_fma_f(bIn0, bIn1, bIn2); #endif } #endif // _HEAVY_MATH_H_