Mercurial > hg > beaglert
view examples/04-Audio/oscillator-bank/audio_routines.S @ 507:1cec96845a23 prerelease
Explanted explantation
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Wed, 22 Jun 2016 01:51:17 +0100 |
parents | 8fcfbfb32aa0 |
children |
line wrap: on
line source
@ @ audio_routines.S @ @ NEON-based functions for time-critical audio processing @ @ Andrew McPherson 2014 @ Queen Mary University of London @ .syntax unified .arch armv7-a .fpu neon @ void oscillator_bank_neon(int numAudioFrames, float *audioOut, @ int activePartialNum, int lookupTableSize, @ float *phases, float *frequencies, float *amplitudes, @ float *freqDerivatives, float *ampDerivatives, @ float *lookupTable); @ Registers: @ r0: numAudioFrames How many frames to render @ r1: audioOut Buffer for audio output samples [stereo] @ r2: activePartialNum How many active partials to render @ r3: lookupTableSize Size of lookup table @ ---- other arguments start on the stack and are moved: ----- @ r4: phases Phase of each oscillator (pointer) @ r5: frequencies Normalised frequency of each oscillator (pointer) @ r6: amplitudes Normalised amplitude of each oscillator (pointer) @ r7: freqDerivatives Derivative of frequency for each oscillator (pointer) @ r8: ampDerivatives Derivative of amplitude for each oscillator (pointer) @ r9: lookupTable Lookup table containing one oscillation @ @ Alignment requirements: @ audioOut: 8-byte boundary @ phases: 16-byte boundary @ frequencies: 16-byte boundary @ amplitudes: 16-byte boundary @ freqDerivatives: 16-byte bounary @ ampDerivatives: 16-byte boundary @ lookupTable: 4-byte boundary (TODO: check this) .align 2 .global oscillator_bank_neon .thumb .thumb_func .type oscillator_bank_neon, %function oscillator_bank_neon: dSample .dn D6.F32 qPhases .qn Q8.F32 dPhases_0 .dn D16.F32 dPhases_1 .dn D17.F32 qFreqs .qn Q9.F32 dFreqs_0 .dn D18.F32 dFreqs_1 .dn D19.F32 qAmps .qn Q10.F32 dAmps_0 .dn D20.F32 dAmps_1 .dn D21.F32 qFreqDs .qn Q11.F32 dFreqDs_0 .dn D22.F32 dFreqDs_1 .dn D23.F32 qAmpDs .qn Q12.F32 dAmpDs_0 .dn D24.F32 dAmpDs_1 .dn D25.F32 qBaseInts .qn Q13.U32 @ Base indexes: unsigned ints x4 dBaseInts_0 .dn D26.U32 dBaseInts_1 .dn D27.U32 qFractions .qn Q14.F32 @ Fraction indexes: floats x4 qTableBase .qn Q15.U32 @ Base of lookup table cmp r0, #0 @ Check for trivial case 1: zero frames it eq bxeq lr @ Return if that's the case (otherwise might have odd behaviour) cmp r2, #4 @ Check for trivial case 2: zero oscillators it lt bxlt lr @ Return if that's the case push {r4-r11} @ Now arguments start 32 bytes above SP add r11, sp, #32 @ Pointer to 32 bytes into the stack ldm r11, {r4-r9} @ Load 6 arguments into registers vdup qTableBase, r9 @ Move lookup table base index into 4 ints @ Outer loop: iterate over the number of oscillators, choosing 4 at a @ time to work with. oscbank_oscillator_loop: vld1 {dPhases_0, dPhases_1}, [r4] @ no increment; will store at end of sample loop vld1 {dFreqs_0, dFreqs_1}, [r5] vld1 {dAmps_0, dAmps_1}, [r6] vld1 {dFreqDs_0, dFreqDs_1}, [r7]! @ increment; won't update at end of sample loop vld1 {dAmpDs_0, dAmpDs_1}, [r8]! push {r0-r1,r4-r8} @ --- inner loop: iterate over the number of samples --- oscbank_sample_loop: vcvt qBaseInts, qPhases @ Take floor(phases) vmov q2.f32, #1.0 @ Load 1.0 into every slot of q2 vshl q0.U32, qBaseInts, #2 @ Shift the indexes left 2 (*4 for float addressing) vcvt qFractions, qBaseInts @ int back to float vadd q0.U32, q0.U32, qTableBase @ Find memory addresses vmov r4, r5, d0 @ Move two indexes to ARM registers vmov r6, r7, d1 @ Move two more indexes to ARM registers vsub qFractions, qPhases, qFractions @ fraction = phase - floor(phase) vldr.64 d0, [r4] @ Load two consecutive floats at each location vldr.64 d1, [r5] @ These hold the previous and following samples in the table vldr.64 d2, [r6] @ TODO: check whether these work at 4-byte alignment vldr.64 d3, [r7] @ Format at this point: @ Osc0(before) Osc0(after) Osc1(before) Osc1(after) Osc2(before) Osc2(after) Osc3(before) Osc3(after) @ We want: @ Osc0(before) Osc1(before) Osc2(before) Osc3(before) Osc0(after) Osc1(after) Osc2(after) Osc3(after) vuzp.32 q0, q1 @ Now q0 contains before, q1 contains after vsub q2.f32, q2.f32, qFractions @ q2 = 1.0 - fraction vmul q1.f32, q1.f32, qFractions @ q1 = fraction * after vmul q0.f32, q0.f32, q2.f32 @ q0 = (1.0 - fraction) * before vadd qPhases, qPhases, qFreqs @ Update phases vadd qFreqs, qFreqs, qFreqDs @ Update frequencies vadd q0.f32, q0.f32, q1.f32 @ Add two interpolated components to get the final sample vdup q2.u32, r3 @ Put lookup table size into each element of q2 vcvt qBaseInts, qPhases @ Take floor of new phases vmul q0.f32, q0.f32, qAmps @ Multiply samples by current amplitude vld1 dSample, [r1] @ Load the current stereo samples vpadd d2.f32, d0.f32, d1.f32 @ Pairwise accumulate q0 (output sample) into d2 vand q2, q2, qBaseInts @ Logical AND of new phase int leaves 1 bit set only if phase >= table size vpadd d3.f32, d2.f32, d2.f32 @ Pairwise accumulate d2 into d0 --> d0[0] and d0[1] both hold total of 4 oscillators vadd qAmps, qAmps, qAmpDs @ Update amplitudes vcvt q0.f32, q2.u32 @ Convert int back to float after AND operation vadd dSample, dSample, d3.f32 @ Add oscillator outputs to each channel subs r0, r0, #1 @ numFrames-- vsub qPhases, qPhases, q0.f32 @ Keep phases in table range vst1 dSample, [r1]! @ Store back in buffer and increment by 8 it gt bgt oscbank_sample_loop @ Loop if numFrames > 0 @ --- end inner loop --- pop {r0-r1,r4-r8} @ Restore registers: restores audioOut and numFrames, among others vst1 {dPhases_0, dPhases_1}, [r4]! @ Store phases back to array vst1 {dFreqs_0, dFreqs_1}, [r5]! @ Store frequencies back to array vst1 {dAmps_0, dAmps_1}, [r6]! @ Store amplitudes back to array @ No need to update r7, r8 subs r2, r2, #4 @ numPartials -= 4 it gt bgt oscbank_oscillator_loop @ Loop if numPartials > 0 pop {r4-r11} bx lr