Mercurial > hg > beaglert
view core/PRU.cpp @ 237:048b7a4dc841
Minor fixes
author | Giulio Moro <giuliomoro@yahoo.it> |
---|---|
date | Sun, 10 Apr 2016 12:23:36 +0200 |
parents | c0bf6157f67e |
children | 33e0e4831763 88cf310417cd |
line wrap: on
line source
/* * PRU.cpp * * Code for communicating with the Programmable Realtime Unit (PRU) * on the BeagleBone AM335x series processors. The PRU loads and runs * a separate code image compiled from an assembly file. Here it is * used to handle audio and SPI ADC/DAC data. * * This code is specific to the PRU code in the assembly file; for example, * it uses certain GPIO resources that correspond to that image. * * Created on: May 27, 2014 * Author: andrewm */ #include "../include/PRU.h" #include "../include/prussdrv.h" #include "../include/pruss_intc_mapping.h" #include "../include/digital_gpio_mapping.h" #include "../include/GPIOcontrol.h" #include "../include/BeagleRT.h" #include "../include/pru_rtaudio_bin.h" #include <iostream> #include <stdlib.h> #include <cstdio> #include <cerrno> #include <fcntl.h> #include <sys/mman.h> #include <unistd.h> // Xenomai-specific includes #include <sys/mman.h> #include <native/task.h> #include <native/timer.h> #include <rtdk.h> using namespace std; #define PRU_MEM_MCASP_OFFSET 0x2000 // Offset within PRU-SHARED RAM #define PRU_MEM_MCASP_LENGTH 0x2000 // Length of McASP memory, in bytes #define PRU_MEM_DAC_OFFSET 0x0 // Offset within PRU0 RAM #define PRU_MEM_DAC_LENGTH 0x2000 // Length of ADC+DAC memory, in bytes #define PRU_MEM_COMM_OFFSET 0x0 // Offset within PRU-SHARED RAM #define PRU_MEM_DIGITAL_OFFSET 0x1000 //Offset within PRU-SHARED RAM #define MEM_DIGITAL_BUFFER1_OFFSET 0x400 //Start pointer to DIGITAL_BUFFER1, which is 256 words. // 256 is the maximum number of frames allowed #define PRU_SHOULD_STOP 0 #define PRU_CURRENT_BUFFER 1 #define PRU_BUFFER_FRAMES 2 #define PRU_SHOULD_SYNC 3 #define PRU_SYNC_ADDRESS 4 #define PRU_SYNC_PIN_MASK 5 #define PRU_LED_ADDRESS 6 #define PRU_LED_PIN_MASK 7 #define PRU_FRAME_COUNT 8 #define PRU_USE_SPI 9 #define PRU_SPI_NUM_CHANNELS 10 #define PRU_USE_DIGITAL 11 short int digitalPins[NUM_DIGITALS]={ GPIO_NO_BIT_0, GPIO_NO_BIT_1, GPIO_NO_BIT_2, GPIO_NO_BIT_3, GPIO_NO_BIT_4, GPIO_NO_BIT_5, GPIO_NO_BIT_6, GPIO_NO_BIT_7, GPIO_NO_BIT_8, GPIO_NO_BIT_9, GPIO_NO_BIT_10, GPIO_NO_BIT_11, GPIO_NO_BIT_12, GPIO_NO_BIT_13, GPIO_NO_BIT_14, GPIO_NO_BIT_15, }; #define PRU_SAMPLE_INTERVAL_NS 11338 // 88200Hz per SPI sample = 11.338us #define GPIO0_ADDRESS 0x44E07000 #define GPIO1_ADDRESS 0x4804C000 #define GPIO_SIZE 0x198 #define GPIO_CLEARDATAOUT (0x190 / 4) #define GPIO_SETDATAOUT (0x194 / 4) #define TEST_PIN_GPIO_BASE GPIO0_ADDRESS // Use GPIO0(31) for debugging #define TEST_PIN_MASK (1 << 31) #define TEST_PIN2_MASK (1 << 26) #define USERLED3_GPIO_BASE GPIO1_ADDRESS // GPIO1(24) is user LED 3 #define USERLED3_PIN_MASK (1 << 24) const unsigned int PRU::kPruGPIODACSyncPin = 5; // GPIO0(5); P9-17 const unsigned int PRU::kPruGPIOADCSyncPin = 48; // GPIO1(16); P9-15 const unsigned int PRU::kPruGPIOTestPin = 60; // GPIO1(28); P9-12 const unsigned int PRU::kPruGPIOTestPin2 = 31; // GPIO0(31); P9-13 const unsigned int PRU::kPruGPIOTestPin3 = 26; // GPIO0(26); P8-14 extern int gShouldStop; extern int gRTAudioVerbose; // Constructor: specify a PRU number (0 or 1) PRU::PRU(BeagleRTContext *input_context) : context(input_context), pru_number(0), running(false), analog_enabled(false), digital_enabled(false), gpio_enabled(false), led_enabled(false), gpio_test_pin_enabled(false), pru_buffer_comm(0), pru_buffer_spi_dac(0), pru_buffer_spi_adc(0), pru_buffer_digital(0), pru_buffer_audio_dac(0), pru_buffer_audio_adc(0), xenomai_gpio_fd(-1), xenomai_gpio(0) { } // Destructor PRU::~PRU() { if(running) disable(); if(gpio_enabled) cleanupGPIO(); if(xenomai_gpio_fd >= 0) close(xenomai_gpio_fd); } // Prepare the GPIO pins needed for the PRU // If include_test_pin is set, the GPIO output // is also prepared for an output which can be // viewed on a scope. If include_led is set, // user LED 3 on the BBB is taken over by the PRU // to indicate activity int PRU::prepareGPIO(int include_test_pin, int include_led) { if(context->analogFrames != 0) { // Prepare DAC CS/ pin: output, high to begin if(gpio_export(kPruGPIODACSyncPin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export DAC sync pin\n"; } if(gpio_set_dir(kPruGPIODACSyncPin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on DAC sync pin\n"; return -1; } if(gpio_set_value(kPruGPIODACSyncPin, HIGH)) { if(gRTAudioVerbose) cout << "Couldn't set value on DAC sync pin\n"; return -1; } // Prepare ADC CS/ pin: output, high to begin if(gpio_export(kPruGPIOADCSyncPin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export ADC sync pin\n"; } if(gpio_set_dir(kPruGPIOADCSyncPin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on ADC sync pin\n"; return -1; } if(gpio_set_value(kPruGPIOADCSyncPin, HIGH)) { if(gRTAudioVerbose) cout << "Couldn't set value on ADC sync pin\n"; return -1; } analog_enabled = true; } if(context->digitalFrames != 0){ for(unsigned int i = 0; i < context->digitalChannels; i++){ if(gpio_export(digitalPins[i])) { if(gRTAudioVerbose) cerr << "Warning: couldn't export digital GPIO pin " << digitalPins[i] << "\n"; // this is left as a warning because if the pin has been exported by somebody else, can still be used } if(gpio_set_dir(digitalPins[i], INPUT_PIN)) { if(gRTAudioVerbose) cerr << "Error: Couldn't set direction on digital GPIO pin " << digitalPins[i] << "\n"; return -1; } } digital_enabled = true; } if(include_test_pin) { // Prepare GPIO test output (for debugging), low to begin if(gpio_export(kPruGPIOTestPin)) { if(gRTAudioVerbose) cout << "Warning: couldn't export GPIO test pin\n"; } if(gpio_set_dir(kPruGPIOTestPin, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on GPIO test pin\n"; return -1; } if(gpio_set_value(kPruGPIOTestPin, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on GPIO test pin\n"; return -1; } if(gpio_export(kPruGPIOTestPin2)) { if(gRTAudioVerbose) cout << "Warning: couldn't export GPIO test pin 2\n"; } if(gpio_set_dir(kPruGPIOTestPin2, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on GPIO test pin 2\n"; return -1; } if(gpio_set_value(kPruGPIOTestPin2, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on GPIO test pin 2\n"; return -1; } if(gpio_export(kPruGPIOTestPin3)) { if(gRTAudioVerbose) cout << "Warning: couldn't export GPIO test pin 3\n"; } if(gpio_set_dir(kPruGPIOTestPin3, OUTPUT_PIN)) { if(gRTAudioVerbose) cout << "Couldn't set direction on GPIO test pin 3\n"; return -1; } if(gpio_set_value(kPruGPIOTestPin3, LOW)) { if(gRTAudioVerbose) cout << "Couldn't set value on GPIO test pin 3\n"; return -1; } gpio_test_pin_enabled = true; } if(include_led) { // Turn off system function for LED3 so it can be reused by PRU led_set_trigger(3, "none"); led_enabled = true; } gpio_enabled = true; return 0; } // Clean up the GPIO at the end void PRU::cleanupGPIO() { if(!gpio_enabled) return; if(analog_enabled) { gpio_unexport(kPruGPIODACSyncPin); gpio_unexport(kPruGPIOADCSyncPin); } if(digital_enabled){ for(unsigned int i = 0; i < context->digitalChannels; i++){ gpio_unexport(digitalPins[i]); } } if(gpio_test_pin_enabled) { gpio_unexport(kPruGPIOTestPin); gpio_unexport(kPruGPIOTestPin2); gpio_unexport(kPruGPIOTestPin3); } if(led_enabled) { // Set LED back to default eMMC status // TODO: make it go back to its actual value before this program, // rather than the system default led_set_trigger(3, "mmc1"); } gpio_enabled = gpio_test_pin_enabled = false; } // Initialise and open the PRU int PRU::initialise(int pru_num, int frames_per_buffer, int spi_channels, bool xenomai_test_pin) { uint32_t *pruMem = 0; if(!gpio_enabled) { rt_printf("initialise() called before GPIO enabled\n"); return 1; } pru_number = pru_num; /* Initialize structure used by prussdrv_pruintc_intc */ /* PRUSS_INTC_INITDATA is found in pruss_intc_mapping.h */ tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA; /* Allocate and initialize memory */ prussdrv_init(); if(prussdrv_open(PRU_EVTOUT_0)) { rt_printf("Failed to open PRU driver\n"); return 1; } /* Map PRU's INTC */ prussdrv_pruintc_init(&pruss_intc_initdata); /* Map PRU memory to pointers */ prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, (void **)&pruMem); pru_buffer_comm = (uint32_t *)&pruMem[PRU_MEM_COMM_OFFSET/sizeof(uint32_t)]; pru_buffer_audio_dac = (int16_t *)&pruMem[PRU_MEM_MCASP_OFFSET/sizeof(uint32_t)]; /* ADC memory starts 2(ch)*2(buffers)*bufsize samples later */ pru_buffer_audio_adc = &pru_buffer_audio_dac[4 * context->audioFrames]; if(analog_enabled) { prussdrv_map_prumem (pru_number == 0 ? PRUSS0_PRU0_DATARAM : PRUSS0_PRU1_DATARAM, (void **)&pruMem); pru_buffer_spi_dac = (uint16_t *)&pruMem[PRU_MEM_DAC_OFFSET/sizeof(uint32_t)]; /* ADC memory starts after N(ch)*2(buffers)*bufsize samples */ pru_buffer_spi_adc = &pru_buffer_spi_dac[2 * context->analogChannels * context->analogFrames]; } else { pru_buffer_spi_dac = pru_buffer_spi_adc = 0; } if(digital_enabled) { prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, (void **)&pruMem); pru_buffer_digital = (uint32_t *)&pruMem[PRU_MEM_DIGITAL_OFFSET/sizeof(uint32_t)]; } else { pru_buffer_digital = 0; } /* Set up flags */ pru_buffer_comm[PRU_SHOULD_STOP] = 0; pru_buffer_comm[PRU_CURRENT_BUFFER] = 0; pru_buffer_comm[PRU_BUFFER_FRAMES] = context->analogFrames; pru_buffer_comm[PRU_SHOULD_SYNC] = 0; pru_buffer_comm[PRU_SYNC_ADDRESS] = 0; pru_buffer_comm[PRU_SYNC_PIN_MASK] = 0; if(led_enabled) { pru_buffer_comm[PRU_LED_ADDRESS] = USERLED3_GPIO_BASE; pru_buffer_comm[PRU_LED_PIN_MASK] = USERLED3_PIN_MASK; } else { pru_buffer_comm[PRU_LED_ADDRESS] = 0; pru_buffer_comm[PRU_LED_PIN_MASK] = 0; } if(analog_enabled) { pru_buffer_comm[PRU_USE_SPI] = 1; pru_buffer_comm[PRU_SPI_NUM_CHANNELS] = context->analogChannels; } else { pru_buffer_comm[PRU_USE_SPI] = 0; pru_buffer_comm[PRU_SPI_NUM_CHANNELS] = 0; } if(digital_enabled) { pru_buffer_comm[PRU_USE_DIGITAL] = 1; //TODO: add mask } else { pru_buffer_comm[PRU_USE_DIGITAL] = 0; } /* Clear ADC and DAC memory.*/ //TODO: this initialisation should only address the memory effectively used by these buffers, i.e.:depend on the number of frames // (otherwise might cause issues if we move memory locations later on) if(analog_enabled) { for(int i = 0; i < PRU_MEM_DAC_LENGTH / 2; i++) pru_buffer_spi_dac[i] = 0; if(digital_enabled){ for(int i = 0; i < PRU_MEM_DIGITAL_OFFSET*2; i++) pru_buffer_digital[i] = 0x0000ffff; // set to all inputs, to avoid unexpected spikes } } for(int i = 0; i < PRU_MEM_MCASP_LENGTH / 2; i++) pru_buffer_audio_dac[i] = 0; /* If using GPIO test pin for Xenomai (for debugging), initialise the pointer now */ if(xenomai_test_pin && xenomai_gpio_fd < 0) { xenomai_gpio_fd = open("/dev/mem", O_RDWR); if(xenomai_gpio_fd < 0) rt_printf("Unable to open /dev/mem for GPIO test pin\n"); else { xenomai_gpio = (uint32_t *)mmap(0, GPIO_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, xenomai_gpio_fd, TEST_PIN_GPIO_BASE); if(xenomai_gpio == MAP_FAILED) { rt_printf("Unable to map GPIO address for test pin\n"); xenomai_gpio = 0; close(xenomai_gpio_fd); xenomai_gpio_fd = -1; } } } // Allocate audio buffers context->audioIn = (float *)malloc(2 * context->audioFrames * sizeof(float)); context->audioOut = (float *)malloc(2 * context->audioFrames * sizeof(float)); if(context->audioIn == 0 || context->audioOut == 0) { rt_printf("Error: couldn't allocate audio buffers\n"); return 1; } // Allocate analog buffers if(analog_enabled) { context->analogIn = (float *)malloc(context->analogChannels * context->analogFrames * sizeof(float)); context->analogOut = (float *)malloc(context->analogChannels * context->analogFrames * sizeof(float)); last_analog_out_frame = (float *)malloc(context->analogChannels * sizeof(float)); if(context->analogIn == 0 || context->analogOut == 0 || last_analog_out_frame == 0) { rt_printf("Error: couldn't allocate analog buffers\n"); return 1; } memset(last_analog_out_frame, 0, context->analogChannels * sizeof(float)); } // Allocate digital buffers digital_buffer0 = pru_buffer_digital; digital_buffer1 = pru_buffer_digital + MEM_DIGITAL_BUFFER1_OFFSET / sizeof(uint32_t); if(digital_enabled) { last_digital_buffer = (uint32_t *)malloc(context->digitalFrames * sizeof(uint32_t)); //temp buffer to hold previous states if(last_digital_buffer == 0) { rt_printf("Error: couldn't allocate digital buffers\n"); return 1; } for(unsigned int n = 0; n < context->digitalFrames; n++){ // Initialize lastDigitalFrames to all inputs last_digital_buffer[n] = 0x0000ffff; } } context->digital = digital_buffer0; return 0; } // Run the code image in the specified file int PRU::start(char * const filename) { /* Clear any old interrupt */ prussdrv_pru_clear_event(PRU_EVTOUT_0, PRU0_ARM_INTERRUPT); /* Load and execute binary on PRU */ if(filename[0] == '\0') { //if the string is empty, load the embedded code if(gRTAudioVerbose) rt_printf("Using embedded PRU code\n"); if(prussdrv_exec_code(pru_number, PRUcode, sizeof(PRUcode))) { rt_printf("Failed to execute PRU code\n"); return 1; } } else { if(gRTAudioVerbose) rt_printf("Using PRU code from %s\n",filename); if(prussdrv_exec_program(pru_number, filename)) { rt_printf("Failed to execute PRU code from %s\n", filename); return 1; } } running = true; return 0; } // Main loop to read and write data from/to PRU void PRU::loop(RT_INTR *pru_interrupt, void *userData) { #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS RTIME irqTimeout = PRU_SAMPLE_INTERVAL_NS * 1024; // Timeout for PRU interrupt: about 10ms, much longer than any expected period #else // Polling interval is 1/4 of the period RTIME sleepTime = PRU_SAMPLE_INTERVAL_NS * (context->analogChannels / 2) * context->analogFrames / 4; #endif uint32_t pru_audio_offset, pru_spi_offset; // Before starting, look at the last state of the analog and digital outputs which might // have been changed by the user during the setup() function. This lets us start with pin // directions and output values at something other than defaults. if(analog_enabled) { if(context->flags & BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST) { // Remember the content of the last_analog_out_frame for(unsigned int ch = 0; ch < context->analogChannels; ch++){ last_analog_out_frame[ch] = context->analogOut[context->analogChannels * (context->analogFrames - 1) + ch]; } } } if(digital_enabled) { for(unsigned int n = 0; n < context->digitalFrames; n++){ last_digital_buffer[n] = context->digital[n]; } } // TESTING // uint32_t testCount = 0; // RTIME startTime = rt_timer_read(); #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS int result; #else // Which buffer the PRU was last processing uint32_t lastPRUBuffer = 0; #endif while(!gShouldStop) { #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS // Wait for PRU to move to change buffers; // PRU will send an interrupts which we wait for rt_intr_enable(pru_interrupt); while(!gShouldStop) { result = rt_intr_wait(pru_interrupt, irqTimeout); if(result >= 0) break; else if(result == -ETIMEDOUT) rt_printf("Warning: PRU timeout!\n"); else { rt_printf("Error: wait for interrupt failed (%d)\n", result); gShouldStop = 1; } } // Clear pending PRU interrupt prussdrv_pru_clear_event(PRU_EVTOUT_1, PRU1_ARM_INTERRUPT); #else // Poll while(pru_buffer_comm[PRU_CURRENT_BUFFER] == lastPRUBuffer && !gShouldStop) { rt_task_sleep(sleepTime); } lastPRUBuffer = pru_buffer_comm[PRU_CURRENT_BUFFER]; #endif if(gShouldStop) break; // Check which buffer we're on-- will have been set right // before the interrupt was asserted if(pru_buffer_comm[PRU_CURRENT_BUFFER] == 1) { // PRU is on buffer 1. We read and write to buffer 0 pru_audio_offset = 0; pru_spi_offset = 0; if(digital_enabled) context->digital = digital_buffer0; } else { // PRU is on buffer 0. We read and write to buffer 1 pru_audio_offset = context->audioFrames * 2; pru_spi_offset = context->analogFrames * context->analogChannels; if(digital_enabled) context->digital = digital_buffer1; } // FIXME: some sort of margin is needed here to prevent the audio // code from completely eating the Linux system // testCount++; //rt_task_sleep(sleepTime*4); //rt_task_sleep(sleepTime/4); if(xenomai_gpio != 0) { // Set the test pin high xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN_MASK; } // Convert short (16-bit) samples to float // TODO: NEON for(unsigned int n = 0; n < 2 * context->audioFrames; n++) context->audioIn[n] = (float)pru_buffer_audio_adc[n + pru_audio_offset] / 32768.0f; if(analog_enabled) { // TODO: NEON for(unsigned int n = 0; n < context->analogChannels * context->analogFrames; n++) context->analogIn[n] = (float)pru_buffer_spi_adc[n + pru_spi_offset] / 65536.0f; if(context->flags & BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST) { // Initialize the output buffer with the values that were in the last frame of the previous output for(unsigned int ch = 0; ch < context->analogChannels; ch++){ for(unsigned int n = 0; n < context->analogFrames; n++){ context->analogOut[n * context->analogChannels + ch] = last_analog_out_frame[ch]; } } } else { // Outputs are 0 unless set otherwise memset(context->analogOut, 0, context->analogChannels * context->analogFrames * sizeof(float)); } } if(digital_enabled){ // Use past digital values to initialize the array properly. // For each frame: // - pins previously set as outputs will keep the output value they had in the last frame of the previous buffer, // - pins previously set as inputs will carry the newly read input value for(unsigned int n = 0; n < context->digitalFrames; n++){ uint16_t inputs = last_digital_buffer[n] & 0xffff; // half-word, has 1 for inputs and 0 for outputs uint16_t outputs = ~inputs; // half-word has 1 for outputs and 0 for inputs; context->digital[n] = (last_digital_buffer[context->digitalFrames - 1] & (outputs << 16)) | // keep output values set in the last frame of the previous buffer (context->digital[n] & (inputs << 16)) | // inputs from current context->digital[n]; (last_digital_buffer[n] & (inputs)); // keep pin configuration from previous context->digital[n] // context->digital[n]=digitalBufferTemp[n]; //ignores inputs } } // Call user render function // *********************** render(context, userData); // *********************** if(analog_enabled) { if(context->flags & BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST) { // Remember the content of the last_analog_out_frame for(unsigned int ch = 0; ch < context->analogChannels; ch++){ last_analog_out_frame[ch] = context->analogOut[context->analogChannels * (context->analogFrames - 1) + ch]; } } // Convert float back to short for SPI output for(unsigned int n = 0; n < context->analogChannels * context->analogFrames; n++) { int out = context->analogOut[n] * 65536.0f; if(out < 0) out = 0; else if(out > 65535) out = 65535; pru_buffer_spi_dac[n + pru_spi_offset] = (uint16_t)out; } } if(digital_enabled) { // keep track of past digital values for(unsigned int n = 0; n < context->digitalFrames; n++){ last_digital_buffer[n] = context->digital[n]; } } // Convert float back to short for audio // TODO: NEON for(unsigned int n = 0; n < 2 * context->audioFrames; n++) { int out = context->audioOut[n] * 32768.0f; if(out < -32768) out = -32768; else if(out > 32767) out = 32767; pru_buffer_audio_dac[n + pru_audio_offset] = (int16_t)out; } // Increment total number of samples that have elapsed context->audioSampleCount += context->audioFrames; if(xenomai_gpio != 0) { // Set the test pin high xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN_MASK; } // FIXME: TESTING!! // if(testCount > 100000) // break; } #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS // Turn off the interrupt for the PRU if it isn't already off rt_intr_disable(pru_interrupt); #endif // FIXME: TESTING // RTIME endTime = rt_timer_read(); // RTIME diffTime = endTime - startTime; // rt_printf("%d blocks elapsed in %f seconds, %f Hz block rate\n", testCount, ((float)diffTime / 1.0e9), (float)testCount / ((float)diffTime / 1.0e9)); // Tell PRU to stop pru_buffer_comm[PRU_SHOULD_STOP] = 1; // Wait two buffer lengths for the PRU to finish rt_task_sleep(PRU_SAMPLE_INTERVAL_NS * context->analogFrames * 4 * 2); // Clean up after ourselves free(context->audioIn); free(context->audioOut); if(analog_enabled) { free(context->analogIn); free(context->analogOut); free(last_analog_out_frame); } if(digital_enabled) { free(last_digital_buffer); } context->audioIn = context->audioOut = 0; context->analogIn = context->analogOut = 0; context->digital = 0; } // Wait for an interrupt from the PRU indicate it is finished void PRU::waitForFinish() { if(!running) return; prussdrv_pru_wait_event (PRU_EVTOUT_0); prussdrv_pru_clear_event(PRU_EVTOUT_0, PRU0_ARM_INTERRUPT); } // Turn off the PRU when done void PRU::disable() { /* Disable PRU and close memory mapping*/ prussdrv_pru_disable(pru_number); prussdrv_exit(); running = false; } // Debugging void PRU::setGPIOTestPin() { if(!xenomai_gpio) return; xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN2_MASK; } void PRU::clearGPIOTestPin() { if(!xenomai_gpio) return; xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN2_MASK; }