Mercurial > hg > beaglert
diff examples/10-Instruments/d-box/render.cpp @ 464:8fcfbfb32aa0 prerelease
Examples reorder with subdirectories. Added header to each project. Moved Doxygen to bottom of render.cpp.
author | Robert Jack <robert.h.jack@gmail.com> |
---|---|
date | Mon, 20 Jun 2016 16:20:38 +0100 |
parents | |
children | 8f8809c77dda |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/10-Instruments/d-box/render.cpp Mon Jun 20 16:20:38 2016 +0100 @@ -0,0 +1,870 @@ +/* + * render.cpp + * + * Created on: May 28, 2014 + * Author: Victor Zappi + */ + +#include <Bela.h> +#include <PRU.h> + +#include "StatusLED.h" +#include "config.h" +#include "OscillatorBank.h" +#include "FeedbackOscillator.h" +#include "ADSR.h" +#include "FIRfilter.h" +#include <assert.h> +#include <cmath> +#include <vector> + +#undef DBOX_CAPE_TEST + +// Mappings from pin numbers on PCB to actual DAC channels +// This gives the DAC and ADC connectors the same effective pinout +// Update June 2016: this is no longer needed in the latest Bela +// release, but is kept here for convenience: it used to be +// 6 4 2 0 1 3 5 7 for the DAC pins +#define DAC_PIN0 0 +#define DAC_PIN1 1 +#define DAC_PIN2 2 +#define DAC_PIN3 3 +#define DAC_PIN4 4 +#define DAC_PIN5 5 +#define DAC_PIN6 6 +#define DAC_PIN7 7 + +#define ADC_PIN0 0 +#define ADC_PIN1 1 +#define ADC_PIN2 2 +#define ADC_PIN3 3 +#define ADC_PIN4 4 +#define ADC_PIN5 5 +#define ADC_PIN6 6 +#define ADC_PIN7 7 + +#define N_OCT 4.0 // maximum number of octaves on sensor 1 + +extern vector<OscillatorBank*> gOscBanks; +extern int gCurrentOscBank; +extern int gNextOscBank; +extern PRU *gPRU; +extern StatusLED gStatusLED; +extern bool gIsLoading; +extern bool gAudioIn; + +float *gOscillatorBuffer1, *gOscillatorBuffer2; +float *gOscillatorBufferRead, *gOscillatorBufferWrite; +int gOscillatorBufferReadPointer = 0; +int gOscillatorBufferReadCurrentSize = 0; +int gOscillatorBufferWriteCurrentSize = 0; +bool gOscillatorNeedsRender = false; + +int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix + +// Wavetable which changes in response to an oscillator +float *gDynamicWavetable; +int gDynamicWavetableLength; +bool gDynamicWavetableNeedsRender = false; + +// These variables handle the hysteresis oscillator used for setting the playback speed +bool gSpeedHysteresisOscillatorRising = false; +int gSpeedHysteresisLastTrigger = 0; + +// These variables handle the feedback oscillator used for controlling the wavetable +FeedbackOscillator gFeedbackOscillator; +float *gFeedbackOscillatorTable; +int gFeedbackOscillatorTableLength; + +// This comes from sensor.cpp where it records the most recent touch location on +// sensor 0. +extern float gSensor0LatestTouchPos; +extern int gSensor0LatestTouchNum; +float gPitchLatestInput = 0; + +extern float gSensor1LatestTouchPos[]; +//extern float gSensor1LatestTouchSizes[]; +extern int gSensor1LatestTouchCount; +extern int gSensor1LatestTouchIndex; +int gSensor1LastTouchIndex = -1; +int gSensor1InputDelayCounter = -1; +int gSensor1InputIndex = 0; +float gSensor1MatrixTouchPos[5] = {0}; + +// FSR value from matrix input +extern int gLastFSRValue; + +// Loop points from matrix input 4 +const int gLoopPointsInputBufferSize = 256; +float gLoopPointsInputBuffer[gLoopPointsInputBufferSize]; +int gLoopPointsInputBufferPointer = 0; +float gLoopPointMin = 0, gLoopPointMax = 0; + +// multiplier to activate or mute audio in +int audioInStatus = 0; + +// xenomai timer +SRTIME prevChangeNs = 0; + +// pitch vars +float octaveSplitter; +float semitones[((int)N_OCT*12)+1]; +float deltaTouch = 0; +float deltaWeightP = 0.5 / 65536.0; +float deltaWeightI = 0.0005 / 65536.0; + +// filter vars +ne10_fir_instance_f32_t filter[2]; +ne10_float32_t *filterIn[2]; +ne10_float32_t *filterOut[2]; +ne10_uint32_t blockSize; +ne10_float32_t *filterState[2]; +ne10_float32_t prevFiltered[2]; +int filterGain = 80; +ADSR PeakBurst[2]; +float peak[2]; +float peakThresh = 0.2; + +// Tasks for lower-priority calculation +AuxiliaryTask gMediumPriorityRender, gLowPriorityRender; + + +extern "C" { + // Function prototype for ARM assembly implementation of oscillator bank + void oscillator_bank_neon(int numAudioFrames, float *audioOut, + int activePartialNum, int lookupTableSize, + float *phases, float *frequencies, float *amplitudes, + float *freqDerivatives, float *ampDerivatives, + float *lookupTable); + + void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut, + float *tableIn, float *tableOut); +} + +void wavetable_interpolate(int numSamplesIn, int numSamplesOut, + float *tableIn, float *tableOut, + float *sineTable, float sineMix); + +inline float hysteresis_oscillator(float input, float risingThreshold, + float fallingThreshold, bool *rising); + +void render_medium_prio(); +void render_low_prio(); + +#ifdef DBOX_CAPE_TEST +void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut, + uint16_t *matrixIn, uint16_t *matrixOut); +#endif + +bool setup(BelaContext *context, void *userData) { + int oscBankHopSize = *(int *)userData; + + if(context->analogChannels != 8) { + printf("Error: D-Box needs matrix enabled with 8 channels.\n"); + return false; + } + + // Allocate two buffers for rendering oscillator bank samples + // One will be used for writing in the background while the other is used for reading + // on the audio thread. 8-byte alignment needed for the NEON code. + if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * context->audioChannels * sizeof(float))) { + printf("Error allocating render buffers\n"); + return false; + } + if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * context->audioChannels * sizeof(float))) { + printf("Error allocating render buffers\n"); + return false; + } + gOscillatorBufferWrite = gOscillatorBuffer1; + gOscillatorBufferRead = gOscillatorBuffer2; + + memset(gOscillatorBuffer1, 0, oscBankHopSize * context->audioChannels * sizeof(float)); + memset(gOscillatorBuffer2, 0, oscBankHopSize * context->audioChannels * sizeof(float)); + + // Initialise the dynamic wavetable used by the oscillator bank + // It should match the size of the static one already allocated in the OscillatorBank object + // Don't forget a guard point at the end of the table + gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize; + if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) { + printf("Error allocating wavetable\n"); + return false; + } + + gFeedbackOscillator.initialise(8192, 10.0, context->analogSampleRate); + + for(int n = 0; n < gDynamicWavetableLength + 1; n++) + gDynamicWavetable[n] = 0; + + // pitch + float midPos = 0.5; + octaveSplitter = 1.0 / N_OCT; + int numOfSemi = 12*N_OCT; + int middleSemitone = 12*N_OCT/2; + int lastSemitone = middleSemitone+numOfSemi/2; + float inc = 1.0 / (N_OCT*12.0); + int i = -1; + for(int semi=middleSemitone; semi<=lastSemitone; semi++) + semitones[semi] = ( midPos + (++i)*inc) + 0.5; + i = 0; + for(int semi=middleSemitone-1; semi>=0; semi--) + semitones[semi] = ( midPos - (++i)*inc) + 0.5; + + if(gAudioIn) + audioInStatus = 1; + + // filter + blockSize = context->audioFrames; + filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t)); + filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t)); + filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t)); + filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t)); + filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t)); + filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t)); + ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize); + ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize); + + // peak outputs + PeakBurst[0].setAttackRate(.00001 * context->analogSampleRate); + PeakBurst[1].setAttackRate(.00001 * context->analogSampleRate); + PeakBurst[0].setDecayRate(.5 * context->analogSampleRate); + PeakBurst[1].setDecayRate(.5 * context->analogSampleRate); + PeakBurst[0].setSustainLevel(0.0); + PeakBurst[1].setSustainLevel(0.0); + + // Initialise auxiliary tasks + if((gMediumPriorityRender = Bela_createAuxiliaryTask(&render_medium_prio, BELA_AUDIO_PRIORITY - 10, "dbox-calculation-medium")) == 0) + return false; + if((gLowPriorityRender = Bela_createAuxiliaryTask(&render_low_prio, BELA_AUDIO_PRIORITY - 15, "dbox-calculation-low")) == 0) + return false; + + return true; +} + +void render(BelaContext *context, void *userData) +{ +#ifdef DBOX_CAPE_TEST + render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut); +#else + if(gOscBanks[gCurrentOscBank]->state==bank_toreset) + gOscBanks[gCurrentOscBank]->resetOscillators(); + + if(gOscBanks[gCurrentOscBank]->state==bank_playing) + { + assert(context->audioChannels == 2); + +#ifdef OLD_OSCBANK + memset(audioOut, 0, numAudioFrames * * sizeof(float)); + + /* Render the oscillator bank. The oscillator bank function is written in NEON assembly + * and it strips out all extra checks, so find out in advance whether we can render a whole + * block or whether the frame will increment in the middle of this buffer. + */ + + int framesRemaining = numAudioFrames; + float *audioOutWithOffset = audioOut; + + while(framesRemaining > 0) { + if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) { + /* More frames left in this hop than we need this time. Render and finish */ + oscillator_bank_neon(framesRemaining, audioOutWithOffset, + gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize, + gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies, + gOscBanks[gCurrentOscBank]->oscillatorAmplitudes, + gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives, + gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives, + gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/); + gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining; + if(gOscBanks[gCurrentOscBank]->hopCounter <= 0) + gOscBanks[gCurrentOscBank]->nextHop(); + framesRemaining = 0; + } + else { + /* More frames to render than are left in this hop. Render and decrement the + * number of remaining frames; then advance to the next oscillator frame. + */ + oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset, + gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize, + gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies, + gOscBanks[gCurrentOscBank]->oscillatorAmplitudes, + gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives, + gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives, + gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/); + framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter; + audioOutWithOffset += * gOscBanks[gCurrentOscBank]->hopCounter; + gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter; + gOscBanks[gCurrentOscBank]->nextHop(); + } + } +#else + for(unsigned int n = 0; n < context->audioFrames; n++) { + context->audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n]*audioInStatus; + context->audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n+1]*audioInStatus; + + filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1 + filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2 + + /* FIXME why doesn't this work? */ + /* + if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) { + gOscillatorNeedsRender = true; + scheduleAuxiliaryTask(gLowPriorityRender); + } */ + + if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) { + // Finished reading from the buffer: swap to the next buffer + if(gOscillatorBufferRead == gOscillatorBuffer1) { + gOscillatorBufferRead = gOscillatorBuffer2; + gOscillatorBufferWrite = gOscillatorBuffer1; + } + else { + gOscillatorBufferRead = gOscillatorBuffer1; + gOscillatorBufferWrite = gOscillatorBuffer2; + } + + // New buffer size is whatever finished writing last hop + gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize; + gOscillatorBufferReadPointer = 0; + + gOscillatorNeedsRender = true; + Bela_scheduleAuxiliaryTask(gMediumPriorityRender); + } + } +#endif + } + else + { + for(unsigned int n = 0; n < context->audioFrames; n++) { + context->audioOut[2*n] = context->audioIn[2*n]*audioInStatus; + context->audioOut[2*n + 1] = context->audioIn[2*n+1]*audioInStatus; + + filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1 + filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2 + } + } + + // low pass filter audio in 1 and 2 for peak detection + ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize); + ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize); + + for(unsigned int n = 0; n < context->analogFrames; n++) { + + + /* Matrix Out 0, In 0 + * + * CV loop + * Controls pitch of sound + */ + float touchPosInt = gSensor0LatestTouchPos; + if(touchPosInt < 0) touchPosInt = 0; + if(touchPosInt > 1.0) touchPosInt = 1.0; + context->analogOut[n*8 + DAC_PIN0] = touchPosInt; + + gPitchLatestInput = context->analogIn[n*8 + ADC_PIN0]; + + + /* Matrix Out 7 + * + * Loop feedback with Matrix In 0 + * Controls discreet pitch + */ + float deltaTarget = 0; + int semitoneIndex = 0; + if(gSensor0LatestTouchNum>0) + { + // current pitch is gPitchLatestInput, already retrieved + semitoneIndex = ( gPitchLatestInput * 12 * N_OCT )+0.5; // closest semitone + deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target + deltaTouch += deltaTarget*(deltaWeightI); // update feedback [previous + current] + } + else + deltaTouch = 0; + + float nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out + if(nextOut < 0) nextOut = 0; // clamp + if(nextOut > 1.0) nextOut = 1.0; // clamp + context->analogOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut + + + /* + * Matrix Out 1, In 1 + * + * Hysteresis (comparator) oscillator + * Controls speed of playback + */ + bool wasRising = gSpeedHysteresisOscillatorRising; + context->analogOut[n*8 + DAC_PIN1] = hysteresis_oscillator(context->analogIn[n*8 + ADC_PIN1], 48000.0/65536.0, + 16000.0/65536.0, &gSpeedHysteresisOscillatorRising); + + // Find interval of zero crossing + if(wasRising && !gSpeedHysteresisOscillatorRising) { + int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger; + + // Interval since last trigger will be the new hop size; calculate to set speed + if(interval < 1) + interval = 1; + //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval; + float speed = 144.0 / interval; // Normalise to a fixed expected speed + gOscBanks[gCurrentOscBank]->setSpeed(speed); + + gSpeedHysteresisLastTrigger = gMatrixSampleCount; + } + + /* + * Matrix Out 2, In 2 + * + * Feedback (phase shift) oscillator + * Controls wavetable used for oscillator bank + */ + + int tableLength = gFeedbackOscillator.process(context->analogIn[n*8 + ADC_PIN2], &context->analogOut[n*8 + DAC_PIN2]); + if(tableLength != 0) { + gFeedbackOscillatorTableLength = tableLength; + gFeedbackOscillatorTable = gFeedbackOscillator.wavetable(); + gDynamicWavetableNeedsRender = true; + Bela_scheduleAuxiliaryTask(gLowPriorityRender); + } + + /* + * Matrix Out 3, In 3 + * + * CV loop with delay for time alignment + * Touch positions from sensor 1 + * Change every 32 samples (ca. 1.5 ms) + */ + volatile int touchCount = gSensor1LatestTouchCount; + if(touchCount == 0) + context->analogOut[n*8 + DAC_PIN3] = 0; + else { + int touchIndex = (gMatrixSampleCount >> 5) % touchCount; + context->analogOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f / 65536.0f; + if(touchIndex != gSensor1LastTouchIndex) { + // Just changed to a new touch output. Reset the counter. + // It will take 2*matrixFrames samples for this output to come back to the + // ADC input. But we also want to read near the end of the 32 sample block; + // let's say 24 samples into it. + + // FIXME this won't work for p > 2 + gSensor1InputDelayCounter = 24 + 2*context->analogFrames; + gSensor1InputIndex = touchIndex; + } + gSensor1LastTouchIndex = touchIndex; + } + + if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) { + gSensor1MatrixTouchPos[gSensor1InputIndex] = context->analogIn[n*8 + ADC_PIN3]; + } + + /* Matrix Out 4 + * + * Sensor 1 last pos + */ + touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex]; + if(touchPosInt < 0) touchPosInt = 0; + if(touchPosInt > 1.0) touchPosInt = 1.0; + context->analogOut[n*8 + DAC_PIN4] = touchPosInt; + + /* Matrix In 4 + * + * Loop points selector + */ + gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = context->analogIn[n*8 + ADC_PIN4]; + if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) { + // Find min and max values + float loopMax = 0, loopMin = 1.0; + for(int i = 0; i < gLoopPointsInputBufferSize; i++) { + if(gLoopPointsInputBuffer[i] < loopMin) + loopMin = gLoopPointsInputBuffer[i]; + if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/) + loopMax = gLoopPointsInputBuffer[i]; + } + + if(loopMin >= loopMax) + loopMax = loopMin; + + gLoopPointMax = loopMax; + gLoopPointMin = loopMin; + gLoopPointsInputBufferPointer = 0; + } + + /* Matrix Out 5 + * + * Audio In 1 peak detection and peak burst output + */ + + filterOut[0][n*2+1] *= filterGain; + float burstOut = PeakBurst[0].getOutput(); + if( burstOut < 0.1) + { + if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) ) + { + peak[0] = prevFiltered[0]; + PeakBurst[0].gate(1); + } + } + + PeakBurst[0].process(1); + + float convAudio = burstOut*peak[0]; + context->analogOut[n*8 + DAC_PIN5] = convAudio; + prevFiltered[0] = filterOut[0][n*2+1]; + if(prevFiltered[0]>1) + prevFiltered[0] = 1; + + /* Matrix In 5 + * + * Dissonance, via changing frequency motion of partials + */ + float amount = (float)context->analogIn[n*8 + ADC_PIN5]; + gOscBanks[gCurrentOscBank]->freqMovement = 1.0 - amount; + + + + + /* Matrix Out 6 + * + * Audio In 2 peak detection and peak burst output + */ + + filterOut[1][n*2+1] *= filterGain; + burstOut = PeakBurst[1].getOutput(); + if( burstOut < 0.1) + { + if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) ) + { + peak[1] = prevFiltered[1]; + PeakBurst[1].gate(1); + } + } + + PeakBurst[1].process(1); + + convAudio = burstOut*peak[1]; + context->analogOut[n*8 + DAC_PIN6] = convAudio; + prevFiltered[1] = filterOut[1][n*2+1]; + if(prevFiltered[1]>1) + prevFiltered[1] = 1; + + /* Matrix In 6 + * + * Sound selector + */ + if(!gIsLoading) { + // Use hysteresis to avoid jumping back and forth between sounds + if(gOscBanks.size() > 1) { + float input = context->analogIn[n*8 + ADC_PIN6]; + const float hystValue = 16000.0 / 65536.0; + + float upHysteresisValue = ((gCurrentOscBank + 1) + hystValue) / gOscBanks.size(); + float downHysteresisValue = (gCurrentOscBank - hystValue) / gOscBanks.size(); + + if(input > upHysteresisValue || input < downHysteresisValue) { + gNextOscBank = input * gOscBanks.size(); + if(gNextOscBank < 0) + gNextOscBank = 0; + if((unsigned)gNextOscBank >= gOscBanks.size()) + gNextOscBank = gOscBanks.size() - 1; + } + } + } + + /* + * Matrix In 7 + * + * FSR from primary touch sensor + * Value ranges from 0-1799 + */ + gLastFSRValue = context->analogIn[n*8 + ADC_PIN7] * 1799.0; + //gLastFSRValue = 1799 - context->analogIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0); + //dbox_printf("%i\n",gLastFSRValue); + + gMatrixSampleCount++; + } + +#endif /* DBOX_CAPE_TEST */ +} + +// Medium-priority render function used for audio hop calculations +void render_medium_prio() +{ + + if(gOscillatorNeedsRender) { + gOscillatorNeedsRender = false; + + /* Render one frame into the write buffer */ + memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * 2 * sizeof(float)); /* assumes 2 audio channels */ + + oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite, + gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize, + gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies, + gOscBanks[gCurrentOscBank]->oscillatorAmplitudes, + gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives, + gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives, + /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable); + + gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * 2; + + /* Update the pitch right before the hop + * Total CV range +/- N_OCT octaves + */ + float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2; + //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch); + gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch); + +#ifdef FIXME_LATER // This doesn't work very well yet + gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount; + float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler(); + for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++) + { + // touch pos is linear but freqs are log + gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler; + gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i]; + if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler) + gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler ); + else + gOscBanks[gCurrentOscBank]->filterPadding[i] = 1; + } +#endif + + RTIME ticks = rt_timer_read(); + SRTIME ns = rt_timer_tsc2ns(ticks); + SRTIME delta = ns-prevChangeNs; + + // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard] + if(gNextOscBank != gCurrentOscBank && delta>100000000) { + + /*printf("ticks %llu\n", (unsigned long long)ticks); + printf("ns %llu\n", (unsigned long long)ns); + printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs); + printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/ + + prevChangeNs = ns; + dbox_printf("Changing to bank %d...\n", gNextOscBank); + if(gOscBanks[gCurrentOscBank]->state==bank_playing){ + gOscBanks[gCurrentOscBank]->stop(); + } + + gCurrentOscBank = gNextOscBank; + gOscBanks[gCurrentOscBank]->hopNumTh = 0; + } + else { + /* Advance to the next oscillator frame */ + gOscBanks[gCurrentOscBank]->nextHop(); + } + } +} + +// Lower-priority render function which performs matrix calculations +// State should be transferred in via global variables +void render_low_prio() +{ + gPRU->setGPIOTestPin(); + if(gDynamicWavetableNeedsRender) { + // Find amplitude of wavetable + float meanAmplitude = 0; + float sineMix; + + for(int i = 0; i < gFeedbackOscillatorTableLength; i++) { + //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]); + meanAmplitude += fabs(gFeedbackOscillatorTable[i]); + } + meanAmplitude /= (float)gFeedbackOscillatorTableLength; + + if(meanAmplitude > 0.35) + sineMix = 0; + else + sineMix = (.35 - meanAmplitude) / .35; + + //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix); + + // Copy to main wavetable + wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength, + gFeedbackOscillatorTable, gDynamicWavetable, + gOscBanks[gCurrentOscBank]->lookupTable, sineMix); + } + + if(gLoopPointMin >= 60000.0/65536.0 && gLoopPointMax >= 60000.0/65536.0) { + // KLUDGE! + if(gCurrentOscBank == 0) + gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1); + else + gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1); + } + else { + float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop(); + float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop(); + + int intLoopPointMin = normLoopPointMin; + if(intLoopPointMin < 1) + intLoopPointMin = 1; + int intLoopPointMax = normLoopPointMax; + if(intLoopPointMax <= intLoopPointMin) + intLoopPointMax = intLoopPointMin + 1; + if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1) + intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1; + + //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax); + + /* WORKS, jsut need to fix the glitch when jumps! + * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop(); + if(currentHop < intLoopPointMin -1 ) + gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1); + else if(currentHop > intLoopPointMax + 1) + gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/ + gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax); + } + + if(gIsLoading) + gStatusLED.blink(25, 75); // Blink quickly until load finished + else + gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed()); + gPRU->clearGPIOTestPin(); + +// static int counter = 32; +// if(--counter == 0) { +// for(int i = 0; i < gLoopPointsInputBufferSize; i++) { +// dbox_printf("%d ", gLoopPointsInputBuffer[i]); +// if(i % 32 == 31) +// dbox_printf("\n"); +// } +// dbox_printf("\n\n"); +// counter = 32; +// } + + //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax); +} + +// Clean up at the end of render +void cleanup(BelaContext *context, void *userData) +{ + free(gOscillatorBuffer1); + free(gOscillatorBuffer2); + free(gDynamicWavetable); +} + +// Interpolate one wavetable into another. The output size +// does not include the guard point at the end which will be identical +// to the first point +void wavetable_interpolate(int numSamplesIn, int numSamplesOut, + float *tableIn, float *tableOut, + float *sineTable, float sineMix) +{ + float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut; + + for(int k = 0; k < numSamplesOut; k++) { + float fractionalIndex = (float) k * fractionalScaler; + //int sB = (int)floorf(fractionalIndex); + int sB = (int)floor(fractionalIndex); + int sA = sB + 1; + if(sA >= numSamplesIn) + sA = 0; + float fraction = fractionalIndex - sB; + tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB]; + tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k]; + } + + tableOut[numSamplesOut] = tableOut[0]; +} + +// Create a hysteresis oscillator with a matrix input and output +inline float hysteresis_oscillator(float input, float risingThreshold, float fallingThreshold, bool *rising) +{ + float value; + + if(*rising) { + if(input > risingThreshold) { + *rising = false; + value = 0; + } + else + value = 1.0; + } + else { + if(input < fallingThreshold) { + *rising = true; + value = 1.0; + } + else + value = 0; + } + + return value; +} + +#ifdef DBOX_CAPE_TEST +// Test the functionality of the D-Box cape by checking each input and output +// Loopback cable from ADC to DAC needed +void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut, + uint16_t *matrixIn, uint16_t *matrixOut) +{ + static float phase = 0.0; + static int sampleCounter = 0; + static int invertChannel = 0; + + // Play a sine wave on the audio output + for(int n = 0; n < numAudioFrames; n++) { + audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase); + phase += 2.0 * M_PI * 440.0 / 44100.0; + if(phase >= 2.0 * M_PI) + phase -= 2.0 * M_PI; + } + + for(int n = 0; n < numMatrixFrames; n++) { + // Change outputs every 512 samples + if(sampleCounter < 512) { + for(int k = 0; k < 8; k++) { + if(k == invertChannel) + matrixOut[n*8 + k] = 50000; + else + matrixOut[n*8 + k] = 0; + } + } + else { + for(int k = 0; k < 8; k++) { + if(k == invertChannel) + matrixOut[n*8 + k] = 0; + else + matrixOut[n*8 + k] = 50000; + } + } + + // Read after 256 samples: input should be low + if(sampleCounter == 256) { + for(int k = 0; k < 8; k++) { + if(k == invertChannel) { + if(matrixIn[n*8 + k] < 50000) { + dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]); + } + } + else { + if(matrixIn[n*8 + k] > 2048) { + dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]); + } + } + } + } + else if(sampleCounter == 768) { + for(int k = 0; k < 8; k++) { + if(k == invertChannel) { + if(matrixIn[n*8 + k] > 2048) { + dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]); + } + } + else { + if(matrixIn[n*8 + k] < 50000) { + dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]); + } + } + } + } + + if(++sampleCounter >= 1024) { + sampleCounter = 0; + invertChannel++; + if(invertChannel >= 8) + invertChannel = 0; + } + } +} +#endif + +