comparison examples/cape_test/render.cpp @ 300:dbeed520b014 prerelease

Renamed projects to examples
author Giulio Moro <giuliomoro@yahoo.it>
date Fri, 27 May 2016 13:58:20 +0100
parents projects/cape_test/render.cpp@8d80eda512cd
children e4392164b458
comparison
equal deleted inserted replaced
297:a3d83ebdf49b 300:dbeed520b014
1 /*
2 * render.cpp
3 *
4 * Created on: Oct 24, 2014
5 * Author: parallels
6 */
7
8
9 #include <BeagleRT.h>
10 #include <cmath>
11
12 #define ANALOG_LOW (2048.0 / 65536.0)
13 #define ANALOG_HIGH (50000.0 / 65536.0)
14
15 const int gDACPinOrder[] = {6, 4, 2, 0, 1, 3, 5, 7};
16
17 enum {
18 kStateTestingAudioLeft = 0,
19 kStateTestingAudioRight,
20 kStateTestingAudioDone
21 };
22
23 uint64_t gLastErrorFrame = 0;
24 uint32_t gEnvelopeSampleCount = 0;
25 float gEnvelopeValueL = 0.5, gEnvelopeValueR = 0.5;
26 float gEnvelopeDecayRate = 0.9995;
27 int gEnvelopeLastChannel = 0;
28
29 float gPositivePeakLevels[2] = {0, 0};
30 float gNegativePeakLevels[2] = {0, 0};
31 float gPeakLevelDecayRate = 0.999;
32 const float gPeakLevelLowThreshold = 0.02;
33 const float gPeakLevelHighThreshold = 0.2;
34 const float gDCOffsetThreshold = 0.1;
35 int gAudioTestState = kStateTestingAudioLeft;
36 int gAudioTestStateSampleCount = 0;
37 int gAudioTestSuccessCounter = 0;
38 const int gAudioTestSuccessCounterThreshold = 64;
39 const int gAudioTestStateSampleThreshold = 16384;
40
41 // setup() is called once before the audio rendering starts.
42 // Use it to perform any initialisation and allocation which is dependent
43 // on the period size or sample rate.
44 //
45 // userData holds an opaque pointer to a data structure that was passed
46 // in from the call to initAudio().
47 //
48 // Return true on success; returning false halts the program.
49
50 bool setup(BeagleRTContext *context, void *userData)
51 {
52 return true;
53 }
54
55 // render() is called regularly at the highest priority by the audio engine.
56 // Input and output are given from the audio hardware and the other
57 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
58 // will be 0.
59
60 void render(BeagleRTContext *context, void *userData)
61 {
62 static float phase = 0.0;
63 static int sampleCounter = 0;
64 static int invertChannel = 0;
65 float frequency = 0;
66
67 // Play a sine wave on the audio output
68 for(unsigned int n = 0; n < context->audioFrames; n++) {
69
70 // Peak detection on the audio inputs, with offset to catch
71 // DC errors
72 for(int ch = 0; ch < 2; ch++) {
73 if(context->audioIn[2*n + ch] > gPositivePeakLevels[ch])
74 gPositivePeakLevels[ch] = context->audioIn[2*n + ch];
75 gPositivePeakLevels[ch] += 0.1;
76 gPositivePeakLevels[ch] *= gPeakLevelDecayRate;
77 gPositivePeakLevels[ch] -= 0.1;
78 if(context->audioIn[2*n + ch] < gNegativePeakLevels[ch])
79 gNegativePeakLevels[ch] = context->audioIn[2*n + ch];
80 gNegativePeakLevels[ch] -= 0.1;
81 gNegativePeakLevels[ch] *= gPeakLevelDecayRate;
82 gNegativePeakLevels[ch] += 0.1;
83 }
84
85 if(gAudioTestState == kStateTestingAudioLeft) {
86 context->audioOut[2*n] = 0.2 * sinf(phase);
87 context->audioOut[2*n + 1] = 0;
88
89 frequency = 3000.0;
90 phase += 2.0 * M_PI * frequency / 44100.0;
91 if(phase >= 2.0 * M_PI)
92 phase -= 2.0 * M_PI;
93
94 gAudioTestStateSampleCount++;
95 if(gAudioTestStateSampleCount >= gAudioTestStateSampleThreshold) {
96 // Check if we have the expected input: signal on the left but not
97 // on the right. Also check that there is not too much DC offset on the
98 // inactive signal
99 if((gPositivePeakLevels[0] - gNegativePeakLevels[0]) >= gPeakLevelHighThreshold
100 && (gPositivePeakLevels[1] - gNegativePeakLevels[1]) <= gPeakLevelLowThreshold &&
101 fabsf(gPositivePeakLevels[1]) < gDCOffsetThreshold &&
102 fabsf(gNegativePeakLevels[1]) < gDCOffsetThreshold) {
103 // Successful test: increment counter
104 gAudioTestSuccessCounter++;
105 if(gAudioTestSuccessCounter >= gAudioTestSuccessCounterThreshold) {
106 gAudioTestState = kStateTestingAudioRight;
107 gAudioTestStateSampleCount = 0;
108 gAudioTestSuccessCounter = 0;
109 }
110
111 }
112 else {
113 if(!((context->audioSampleCount + n) % 22050)) {
114 // Debugging print messages
115 if((gPositivePeakLevels[0] - gNegativePeakLevels[0]) < gPeakLevelHighThreshold)
116 rt_printf("Left Audio In FAIL: insufficient signal: %f\n",
117 gPositivePeakLevels[0] - gNegativePeakLevels[0]);
118 else if(gPositivePeakLevels[1] - gNegativePeakLevels[1] > gPeakLevelLowThreshold)
119 rt_printf("Right Audio In FAIL: signal present when it should not be: %f\n",
120 gPositivePeakLevels[1] - gNegativePeakLevels[1]);
121 else if(fabsf(gPositivePeakLevels[1]) >= gDCOffsetThreshold ||
122 fabsf(gNegativePeakLevels[1]) >= gDCOffsetThreshold)
123 rt_printf("Right Audio In FAIL: DC offset: (%f, %f)\n",
124 gPositivePeakLevels[1], gNegativePeakLevels[1]);
125 }
126 gAudioTestSuccessCounter--;
127 if(gAudioTestSuccessCounter <= 0)
128 gAudioTestSuccessCounter = 0;
129 }
130 }
131 }
132 else if(gAudioTestState == kStateTestingAudioRight) {
133 context->audioOut[2*n] = 0;
134 context->audioOut[2*n + 1] = 0.2 * sinf(phase);
135
136 frequency = 3000.0;
137 phase += 2.0 * M_PI * frequency / 44100.0;
138 if(phase >= 2.0 * M_PI)
139 phase -= 2.0 * M_PI;
140
141 gAudioTestStateSampleCount++;
142 if(gAudioTestStateSampleCount >= gAudioTestStateSampleThreshold) {
143 // Check if we have the expected input: signal on the left but not
144 // on the right
145 if((gPositivePeakLevels[1] - gNegativePeakLevels[1]) >= gPeakLevelHighThreshold
146 && (gPositivePeakLevels[0] - gNegativePeakLevels[0]) <= gPeakLevelLowThreshold &&
147 fabsf(gPositivePeakLevels[0]) < gDCOffsetThreshold &&
148 fabsf(gNegativePeakLevels[0]) < gDCOffsetThreshold) {
149 // Successful test: increment counter
150 gAudioTestSuccessCounter++;
151 if(gAudioTestSuccessCounter >= gAudioTestSuccessCounterThreshold) {
152 gAudioTestSuccessCounter = 0;
153 gAudioTestStateSampleCount = 0;
154 gAudioTestState = kStateTestingAudioDone;
155 }
156 }
157 else {
158 if(!((context->audioSampleCount + n) % 22050)) {
159 // Debugging print messages
160 if((gPositivePeakLevels[1] - gNegativePeakLevels[1]) < gPeakLevelHighThreshold)
161 rt_printf("Right Audio In FAIL: insufficient signal: %f\n",
162 gPositivePeakLevels[1] - gNegativePeakLevels[1]);
163 else if(gPositivePeakLevels[0] - gNegativePeakLevels[0] > gPeakLevelLowThreshold)
164 rt_printf("Left Audio In FAIL: signal present when it should not be: %f\n",
165 gPositivePeakLevels[0] - gNegativePeakLevels[0]);
166 else if(fabsf(gPositivePeakLevels[0]) >= gDCOffsetThreshold ||
167 fabsf(gNegativePeakLevels[0]) >= gDCOffsetThreshold)
168 rt_printf("Left Audio In FAIL: DC offset: (%f, %f)\n",
169 gPositivePeakLevels[0], gNegativePeakLevels[0]);
170 }
171 gAudioTestSuccessCounter--;
172 if(gAudioTestSuccessCounter <= 0)
173 gAudioTestSuccessCounter = 0;
174 }
175 }
176 }
177 else {
178 // Audio input testing finished. Play tones depending on status of
179 // analog testing
180 context->audioOut[2*n] = gEnvelopeValueL * sinf(phase);
181 context->audioOut[2*n + 1] = gEnvelopeValueR * sinf(phase);
182
183 // If one second has gone by with no error, play one sound, else
184 // play another
185 if(context->audioSampleCount + n - gLastErrorFrame > 44100) {
186 gEnvelopeValueL *= gEnvelopeDecayRate;
187 gEnvelopeValueR *= gEnvelopeDecayRate;
188 gEnvelopeSampleCount++;
189 if(gEnvelopeSampleCount > 22050) {
190 if(gEnvelopeLastChannel == 0)
191 gEnvelopeValueR = 0.5;
192 else
193 gEnvelopeValueL = 0.5;
194 gEnvelopeLastChannel = !gEnvelopeLastChannel;
195 gEnvelopeSampleCount = 0;
196 }
197 frequency = 880.0;
198 }
199 else {
200 gEnvelopeValueL = gEnvelopeValueR = 0.5;
201 gEnvelopeLastChannel = 0;
202 frequency = 220.0;
203 }
204
205 phase += 2.0 * M_PI * frequency / 44100.0;
206 if(phase >= 2.0 * M_PI)
207 phase -= 2.0 * M_PI;
208 }
209 }
210
211 for(unsigned int n = 0; n < context->analogFrames; n++) {
212 // Change outputs every 512 samples
213 if(sampleCounter < 512) {
214 for(int k = 0; k < 8; k++) {
215 if(k == invertChannel)
216 context->analogOut[n*8 + gDACPinOrder[k]] = ANALOG_HIGH;
217 else
218 context->analogOut[n*8 + gDACPinOrder[k]] = 0;
219 }
220 }
221 else {
222 for(int k = 0; k < 8; k++) {
223 if(k == invertChannel)
224 context->analogOut[n*8 + gDACPinOrder[k]] = 0;
225 else
226 context->analogOut[n*8 + gDACPinOrder[k]] = ANALOG_HIGH;
227 }
228 }
229
230 // Read after 256 samples: input should be low
231 if(sampleCounter == 256) {
232 for(int k = 0; k < 8; k++) {
233 if(k == invertChannel) {
234 if(context->analogIn[n*8 + k] < ANALOG_HIGH) {
235 rt_printf("FAIL [output %d, input %d] -- output HIGH input %f (inverted)\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
236 gLastErrorFrame = context->audioSampleCount + n;
237 }
238 }
239 else {
240 if(context->analogIn[n*8 + k] > ANALOG_LOW) {
241 rt_printf("FAIL [output %d, input %d] -- output LOW --> input %f\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
242 gLastErrorFrame = context->audioSampleCount + n;
243 }
244 }
245 }
246 }
247 else if(sampleCounter == 768) {
248 for(int k = 0; k < 8; k++) {
249 if(k == invertChannel) {
250 if(context->analogIn[n*8 + k] > ANALOG_LOW) {
251 rt_printf("FAIL [output %d, input %d] -- output LOW input %f (inverted)\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
252 gLastErrorFrame = context->audioSampleCount + n;
253 }
254 }
255 else {
256 if(context->analogIn[n*8 + k] < ANALOG_HIGH) {
257 rt_printf("FAIL [output %d, input %d] -- output HIGH input %f\n", gDACPinOrder[k], k, context->analogIn[n*8 + k]);
258 gLastErrorFrame = context->audioSampleCount + n;
259 }
260 }
261 }
262 }
263
264 if(++sampleCounter >= 1024) {
265 sampleCounter = 0;
266 invertChannel++;
267 if(invertChannel >= 8)
268 invertChannel = 0;
269 }
270 }
271 }
272
273 // cleanup() is called once at the end, after the audio has stopped.
274 // Release any resources that were allocated in setup().
275
276 void cleanup(BeagleRTContext *context, void *userData)
277 {
278
279 }