Mercurial > hg > beaglert
comparison projects/heavy/envelopeTrigger/SignalPhasor.c @ 162:c3e8226a5651 heavy-updated
- added additional flags to C rules (-DNDEBUG, -mfpu=neon)
- sample-accurate envelope triggering pd/heavy example
author | chnrx <chris.heinrichs@gmail.com> |
---|---|
date | Thu, 12 Nov 2015 14:59:46 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
161:07735c9d95c8 | 162:c3e8226a5651 |
---|---|
1 /** | |
2 * Copyright (c) 2014, 2015, Enzien Audio Ltd. | |
3 * | |
4 * Permission to use, copy, modify, and/or distribute this software for any | |
5 * purpose with or without fee is hereby granted, provided that the above | |
6 * copyright notice and this permission notice appear in all copies. | |
7 * | |
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH | |
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY | |
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, | |
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM | |
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR | |
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR | |
14 * PERFORMANCE OF THIS SOFTWARE. | |
15 */ | |
16 | |
17 #include "SignalPhasor.h" | |
18 | |
19 // input phase is in the range of [0,1]. It is independent of o->phase. | |
20 #if HV_SIMD_AVX | |
21 static void sPhasor_updatePhase(SignalPhasor *o, float p) { | |
22 o->phase = _mm256_set_ps( | |
23 p+1.0f+7.0f*o->step.f2sc, p+1.0f+6.0f*o->step.f2sc, | |
24 p+1.0f+5.0f*o->step.f2sc, p+1.0f+4.0f*o->step.f2sc, | |
25 p+1.0f+3.0f*o->step.f2sc, p+1.0f+2.0f*o->step.f2sc, | |
26 p+1.0f+o->step.f2sc, p+1.0f); | |
27 | |
28 // ensure that o->phase is still in range [1,2] | |
29 o->phase = _mm256_or_ps(_mm256_andnot_ps( | |
30 _mm256_set1_ps(-INFINITY), o->phase), _mm256_set1_ps(1.0f)); | |
31 #elif HV_SIMD_SSE | |
32 static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) { | |
33 o->phase = _mm_set_epi32(3*o->step.s+p, 2*o->step.s+p, o->step.s+p, p); | |
34 #elif HV_SIMD_NEON | |
35 static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) { | |
36 o->phase = (uint32x4_t) {p, o->step.s+p, 2*o->step.s+p, 3*o->step.s+p}; | |
37 #else // HV_SIMD_NONE | |
38 static void sPhasor_updatePhase(SignalPhasor *o, hv_uint32_t p) { | |
39 o->phase = p; | |
40 #endif | |
41 } | |
42 | |
43 static void sPhasor_updateFrequency(SignalPhasor *o, float f, double r) { | |
44 #if HV_SIMD_AVX | |
45 o->step.f2sc = (float) (f/r); | |
46 o->inc = _mm256_set1_ps((float) (8.0f*f/r)); | |
47 sPhasor_updatePhase(o, o->phase[0]); | |
48 #elif HV_SIMD_SSE | |
49 o->step.s = (hv_int32_t) (f*(4294967296.0/r)); | |
50 o->inc = _mm_set1_epi32(4*o->step.s); | |
51 sPhasor_updatePhase(o, (hv_uint32_t) (o->phase[0] & 0xFFFFFFFFL)); | |
52 #elif HV_SIMD_NEON | |
53 o->step.s = (hv_int32_t) (f*(4294967296.0/r)); | |
54 o->inc = vdupq_n_s32(4*o->step.s); | |
55 sPhasor_updatePhase(o, vgetq_lane_u32(o->phase, 0)); | |
56 #else // HV_SIMD_NONE | |
57 o->step.s = (hv_int32_t) (f*(4294967296.0/r)); | |
58 o->inc = o->step.s; | |
59 // no need to update phase | |
60 #endif | |
61 } | |
62 | |
63 hv_size_t sPhasor_init(SignalPhasor *o, double samplerate) { | |
64 #if HV_SIMD_AVX | |
65 o->phase = _mm256_set1_ps(1.0f); | |
66 o->inc = _mm256_setzero_ps(); | |
67 o->step.f2sc = (float) (1.0/samplerate); | |
68 #elif HV_SIMD_SSE | |
69 o->phase = _mm_setzero_si128(); | |
70 o->inc = _mm_setzero_si128(); | |
71 o->step.f2sc = (float) (4294967296.0/samplerate); | |
72 #elif HV_SIMD_NEON | |
73 o->phase = vdupq_n_u32(0); | |
74 o->inc = vdupq_n_s32(0); | |
75 o->step.f2sc = (float) (4294967296.0/samplerate); | |
76 #else // HV_SIMD_NONE | |
77 o->phase = 0; | |
78 o->inc = 0; | |
79 o->step.f2sc = (float) (4294967296.0/samplerate); | |
80 #endif | |
81 return 0; | |
82 } | |
83 | |
84 void sPhasor_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m) { | |
85 if (letIn == 1) { | |
86 if (msg_isFloat(m,0)) { | |
87 float phase = msg_getFloat(m,0); | |
88 while (phase < 0.0f) phase += 1.0f; // wrap phase to [0,1] | |
89 while (phase > 1.0f) phase -= 1.0f; | |
90 #if HV_SIMD_AVX | |
91 sPhasor_updatePhase(o, phase); | |
92 #else // HV_SIMD_SSE || HV_SIMD_NEON || HV_SIMD_NONE | |
93 sPhasor_updatePhase(o, (hv_int32_t) (phase * 4294967296.0)); | |
94 #endif | |
95 } | |
96 } | |
97 } | |
98 | |
99 hv_size_t sPhasor_k_init(SignalPhasor *o, float frequency, double samplerate) { | |
100 sPhasor_updateFrequency(o, frequency, samplerate); | |
101 sPhasor_updatePhase(o, 0); | |
102 return 0; | |
103 } | |
104 | |
105 void sPhasor_k_onMessage(HvBase *_c, SignalPhasor *o, int letIn, const HvMessage *m) { | |
106 if (msg_isFloat(m,0)) { | |
107 switch (letIn) { | |
108 case 0: sPhasor_updateFrequency(o, msg_getFloat(m,0), ctx_getSampleRate(_c)); break; | |
109 case 1: { | |
110 float phase = msg_getFloat(m,0); | |
111 while (phase < 0.0f) phase += 1.0f; // wrap phase to [0,1] | |
112 while (phase > 1.0f) phase -= 1.0f; | |
113 #if HV_SIMD_AVX | |
114 sPhasor_updatePhase(o, phase); | |
115 #else // HV_SIMD_SSE || HV_SIMD_NEON || HV_SIMD_NONE | |
116 sPhasor_updatePhase(o, (hv_uint32_t) (phase * 4294967296.0)); | |
117 #endif | |
118 break; | |
119 } | |
120 default: break; | |
121 } | |
122 } | |
123 } |