comparison projects/basic_network/render.cpp @ 92:a55dcdcebdcd

Recovered older basic_network project which got lost in the API update
author Giulio Moro <giuliomoro@yahoo.it>
date Tue, 21 Jul 2015 17:17:37 +0100
parents 7cc79d46ecb9
children 3068421c0737 dbff109f64c2
comparison
equal deleted inserted replaced
91:241d4d5df929 92:a55dcdcebdcd
4 * Created on: Oct 24, 2014 4 * Created on: Oct 24, 2014
5 * Author: parallels 5 * Author: parallels
6 */ 6 */
7 7
8 #include <BeagleRT.h> 8 #include <BeagleRT.h>
9 //#include <rtdk.h>
9 #include <cmath> 10 #include <cmath>
10 #include <client.h> 11 #include <UdpClient.h>
12 #include <Utilities.h>
13
14 AuxiliaryTask transmitReceiveDataTask;
15
16 #define NETWORK_AUDIO_BUFFER_SIZE 400 //1400/4 //maximum payload for a UDP datagram over ethernet is 1472 bytes, I leave some headroom and divide by 4 to get the number of floats
17 struct networkAudio{
18 int timestamp;
19 int currentBuffer;
20 int index;
21 float buffers[2][NETWORK_AUDIO_BUFFER_SIZE];
22 int doneOnTime;
23 bool toBeSent;
24 UdpClient udpClient;
25 };
11 26
12 float gFrequency; 27 float gFrequency;
13 float gPhase; 28 float gPhase;
14 float gInverseSampleRate; 29 float gInverseSampleRate;
15 int gCount=0; 30 int gCount=0;
16 networkData networkObject; 31 //networkData networkObject;
17 AuxiliaryTask transmitReceiveDataTask; 32 #define numNetAudio 3
33 networkAudio netAudio[numNetAudio];
34 AuxiliaryTask printIntervalTask;
35 AuxiliaryTask transmitReceiveAudioTask;
18 36
19 void transmitReceiveData(){ 37 void transmitReceiveAudio(){ //transmit and receive audio buffers
20 printf("transmitReceiveData auxiliary task has started\n"); 38 for(int n=0;n<numNetAudio; n++){
21 while(!gShouldStop){ 39 if(netAudio[n].toBeSent){
22 sendMessage(networkObject); 40 netAudio[n].toBeSent=false;
23 receiveMessage(networkObject); 41 netAudio[n].udpClient.send(netAudio[n].buffers[!netAudio[n].currentBuffer],NETWORK_AUDIO_BUFFER_SIZE*sizeof(float));
24 usleep(1000); 42 netAudio[n].doneOnTime=1;
43 }
25 } 44 }
26 closeSockets();
27 } 45 }
28 46
29 // setup() is called once before the audio rendering starts. 47 // setup() is called once before the audio rendering starts.
30 // Use it to perform any initialisation and allocation which is dependent 48 // Use it to perform any initialisation and allocation which is dependent
31 // on the period size or sample rate. 49 // on the period size or sample rate.
40 gFrequency = *(float *)userData; 58 gFrequency = *(float *)userData;
41 59
42 gInverseSampleRate = 1.0 / context->audioSampleRate; 60 gInverseSampleRate = 1.0 / context->audioSampleRate;
43 gPhase = 0.0; 61 gPhase = 0.0;
44 62
45 networkObject.counter=&gCount; 63 // networkObject.counter=&gCount;
46 networkObject.variables[0]=&gFrequency; 64 // networkObject.variables[0]=&gFrequency;
47 networkObject.variables[1]=&gPhase; 65 // networkObject.variables[1]=&gPhase;
48 networkObject.numVariables=2; 66 // networkObject.numVariables=2;
49 // setupSockets(settings->receivePort, settings->transmitPort, settings->serverName); 67 for(int n=0; n<numNetAudio; n++){
50 setupSockets(10000, 9999, "127.0.0.1"); 68 netAudio[n].doneOnTime=1;
51 transmitReceiveDataTask= BeagleRT_createAuxiliaryTask(*transmitReceiveData, 80, "transmit-receive-data"); 69 netAudio[n].index=0;
52 //scheduleAuxiliaryTask(transmitReceiveDataTask); //here it does not work 70 netAudio[n].currentBuffer=0;
71 netAudio[n].toBeSent=false;
72 // netAudio[n].udpClient.setPort(settings->transmitPort+n);
73 // netAudio[n].udpClient.setServer(settings->serverName);
74 netAudio[n].udpClient.setPort(9999+n);
75 netAudio[n].udpClient.setServer("192.168.7.1");
76 }
77 // setupSockets(settings->receivePort, settings->transmitPort, settings->serverName);
78
79 // transmitReceiveDataTask=createAuxiliaryTask(*transmitReceiveData, 10, "transmit-receive-data");
80 // scheduleAuxiliaryTask(transmitReceiveDataTask); //here it does not work
81 transmitReceiveAudioTask=BeagleRT_createAuxiliaryTask(*transmitReceiveAudio, 98, "transmit-receive-audio");
53 return true; 82 return true;
54 } 83 }
55 84
56 // render() is called regularly at the highest priority by the audio engine. 85 // render() is called regularly at the highest priority by the audio engine.
57 // Input and output are given from the audio hardware and the other 86 // Input and output are given from the audio hardware and the other
58 // ADCs and DACs (if available). If only audio is available, numMatrixFrames 87 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
59 // will be 0. 88 // will be 0.
60 89
61 void render(BeagleRTContext *context, void *userData) 90 void render(BeagleRTContext *context, void *userData)
62 { 91 {/*
63 for(unsigned int n = 0; n < context->audioFrames; n++) { 92 for(unsigned int n = 0; n < context->audioFrames; n++) {
64 float out = 0.7f * sinf(gPhase); 93 float out = 0.7f * sinf(gPhase);
65 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate; 94 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
66 if(gPhase > 2.0 * M_PI) 95 if(gPhase > 2.0 * M_PI)
67 gPhase -= 2.0 * M_PI; 96 gPhase -= 2.0 * M_PI;
72 if(gCount == 0){ 101 if(gCount == 0){
73 BeagleRT_scheduleAuxiliaryTask(transmitReceiveDataTask); 102 BeagleRT_scheduleAuxiliaryTask(transmitReceiveDataTask);
74 } 103 }
75 gCount++; 104 gCount++;
76 } 105 }
106
107
108 */
109 for(int n = 0; n < context->audioFrames; n++) {
110 float out = 0.7f * sinf(gPhase);
111 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
112 if(gPhase > 2.0 * M_PI)
113 gPhase -= 2.0 * M_PI;
114
115 // for(int channel = 0; channel < context->audioChannels; channel++)
116 // context->audioOut[n * context->audioChannels + channel] = context->audioIn[n * context->audioChannels + 0]+context->audioIn[n * context->audioChannels + 1];
117 context->audioOut[n * context->audioChannels] = context->audioIn[n*context->audioChannels+0];
118 context->audioOut[n * context->audioChannels+1]=out;
119 if(0==gCount){
120 // scheduleAuxiliaryTask(transmitReceiveDataTask);
121 }
122 for(int j=0; j<numNetAudio; j++){
123 if(netAudio[j].index==(NETWORK_AUDIO_BUFFER_SIZE)){ // when the buffer is ready ...
124 netAudio[j].toBeSent=true;
125 netAudio[j].index=0; //reset the counter
126 if(netAudio[j].doneOnTime==0)
127 rt_printf("Network buffer underrun :-{\n");
128 netAudio[j].timestamp=gCount;
129 netAudio[j].currentBuffer=!netAudio[j].currentBuffer; //switch buffer
130 netAudio[j].doneOnTime=0;
131 BeagleRT_scheduleAuxiliaryTask(transmitReceiveAudioTask); //send the buffer
132 }
133 }
134 if((gCount&1)==0){
135 netAudio[1].buffers[netAudio[1].currentBuffer][netAudio[1].index++]=analogReadFrame(context,n/2,0)+context->audioOut[n*context->audioChannels + 0];
136 netAudio[2].buffers[netAudio[2].currentBuffer][netAudio[2].index++]=analogReadFrame(context,n/2,1)+context->audioOut[n*context->audioChannels + 0];
137 }
138 netAudio[0].buffers[netAudio[0].currentBuffer][netAudio[0].index++]=0.5*(out+context->audioOut[n*context->audioChannels + 0]);//copy channel 0 to the buffer
139 // netAudio[1].buffers[netAudio[1].currentBuffer][netAudio[1].index++]=0.5*(out+context->audioOut[n*context->audioChannels + 0]);
140 // netAudio[2].buffers[netAudio[2].currentBuffer][netAudio[2].index++]=0.5*(out+context->audioOut[n*context->audioChannels + 0]);
141 gCount++;
142 }
77 } 143 }
78 144
79 // cleanup() is called once at the end, after the audio has stopped. 145 // cleanup() is called once at the end, after the audio has stopped.
80 // Release any resources that were allocated in setup(). 146 // Release any resources that were allocated in setup().
81 147