Mercurial > hg > beaglert
comparison examples/03-Analog/scope-analog/render.cpp @ 464:8fcfbfb32aa0 prerelease
Examples reorder with subdirectories. Added header to each project. Moved Doxygen to bottom of render.cpp.
author | Robert Jack <robert.h.jack@gmail.com> |
---|---|
date | Mon, 20 Jun 2016 16:20:38 +0100 |
parents | |
children | b935f890e512 |
comparison
equal
deleted
inserted
replaced
463:c47709e8b5c9 | 464:8fcfbfb32aa0 |
---|---|
1 /* | |
2 ____ _____ _ _ | |
3 | __ )| ____| | / \ | |
4 | _ \| _| | | / _ \ | |
5 | |_) | |___| |___ / ___ \ | |
6 |____/|_____|_____/_/ \_\ | |
7 | |
8 The platform for ultra-low latency audio and sensor processing | |
9 | |
10 http://bela.io | |
11 | |
12 A project of the Augmented Instruments Laboratory within the | |
13 Centre for Digital Music at Queen Mary University of London. | |
14 http://www.eecs.qmul.ac.uk/~andrewm | |
15 | |
16 (c) 2016 Augmented Instruments Laboratory: Andrew McPherson, | |
17 Astrid Bin, Liam Donovan, Christian Heinrichs, Robert Jack, | |
18 Giulio Moro, Laurel Pardue, Victor Zappi. All rights reserved. | |
19 | |
20 The Bela software is distributed under the GNU Lesser General Public License | |
21 (LGPL 3.0), available here: https://www.gnu.org/licenses/lgpl-3.0.txt | |
22 */ | |
23 | |
24 | |
25 #include <Bela.h> | |
26 #include <cmath> | |
27 #include <Scope.h> | |
28 | |
29 Scope scope; | |
30 | |
31 float gInverseSampleRate; | |
32 float gPhase; | |
33 | |
34 bool setup(BelaContext *context, void *userData) | |
35 { | |
36 | |
37 // setup the scope with 3 channels at the audio sample rate | |
38 scope.setup(3, context->audioSampleRate); | |
39 | |
40 gInverseSampleRate = 1.0 / context->audioSampleRate; | |
41 gPhase = 0.0; | |
42 | |
43 return true; | |
44 } | |
45 | |
46 void render(BelaContext *context, void *userData) | |
47 { | |
48 | |
49 for(unsigned int n = 0; n < context->audioFrames; n++) { | |
50 | |
51 // read analogIn channels 0 and 1 | |
52 float in1 = analogRead(context, n, 0); | |
53 float in2 = analogRead(context, n, 1); | |
54 | |
55 // map in1 to amplitude and in2 to frequency | |
56 float amplitude = in1 * 0.8f; | |
57 float frequency = map(in2, 0, 1, 100, 1000); | |
58 | |
59 // generate a sine wave with the amplitude and frequency | |
60 float out = amplitude * sinf(gPhase); | |
61 gPhase += 2.0 * M_PI * frequency * gInverseSampleRate; | |
62 if(gPhase > 2.0 * M_PI) | |
63 gPhase -= 2.0 * M_PI; | |
64 | |
65 // log the sine wave and sensor values on the scope | |
66 scope.log(out, in1, in2); | |
67 | |
68 // pass the sine wave to the audio outputs | |
69 for(unsigned int channel = 0; channel < context->audioChannels; channel++) | |
70 context->audioOut[n * context->audioChannels + channel] = out; | |
71 | |
72 } | |
73 } | |
74 | |
75 void cleanup(BelaContext *context, void *userData) | |
76 { | |
77 | |
78 } | |
79 | |
80 /* ------------ Project Explantation ------------ */ | |
81 | |
82 /** | |
83 \example 03-scope-analog | |
84 | |
85 Connecting potentiometers | |
86 ------------------------- | |
87 | |
88 This example reads from analogue inputs 0 and 1 via `analogReadFrame()` and | |
89 generates a sine wave with amplitude and frequency determined by their values. | |
90 It's best to connect a 10K potentiometer to each of these analog inputs. Far | |
91 left and far right pins of the pot go to 3.3V and GND, the middle should be | |
92 connected to the analog in pins. | |
93 | |
94 The sine wave is then plotted on the oscilloscope. Click the Open Scope button to | |
95 view the results. As you turn the potentiometers you will see the amplitude and | |
96 frequency of the sine wave change. | |
97 | |
98 This project also shows as example of `map()` which allows you to re-scale a number | |
99 from one range to another. Note that `map()` does not constrain your variable | |
100 within the upper and lower limits. If you want to do this use the `constrain()` | |
101 function. | |
102 */ |