comparison projects/tank_wars/render.cpp @ 10:49f22e1246b2

Tank wars!
author andrewm
date Thu, 13 Nov 2014 15:58:08 +0100
parents
children 06f93bef7dd2
comparison
equal deleted inserted replaced
5:09f03ac40fcc 10:49f22e1246b2
1 /*
2 * render.cpp
3 *
4 * Created on: Oct 24, 2014
5 * Author: parallels
6 */
7
8
9 #include "../../include/RTAudio.h"
10 #include "../../include/Utilities.h"
11 #include "game.h"
12 #include <rtdk.h>
13 #include <cmath>
14 #include <cstdlib>
15 #include <time.h>
16
17 float gFrequency;
18 float gPhase;
19 float gInverseSampleRate;
20 int gNumChannels;
21
22 int gInputTank1Angle = 0; // Inputs for the cannon angles
23 int gInputTank2Angle = 1;
24 int gInputLauncher = 2; // Input for launcher FSR
25
26 int gOutputX = 0; // Outputs for the scope
27 int gOutputY = 1;
28 int gOutputPlayer1LED = 2;
29 int gOutputPlayer2LED = 3;
30
31 int gGameFramesPerSecond = 60; // How often the physics are updated
32 int gGameFrameInterval; // ...and in frames
33 int gSamplesUntilNextFrame; // Counter until next update
34 int gSamplesSinceFinish = 0; // How long since somebody won?
35 bool gGameShouldRestart = false;// Whether we need to reinitiliase the game
36
37 // Counter for overall number of samples that have elapsed
38 unsigned int gSampleCounter = 0;
39
40 // 1st-order filter and peak detector for launcher input
41 float gLauncherLastSample = 0;
42 float gLauncherFilterPole = 0.8;
43 float gLauncherPeakValue = 0;
44 float gLauncherPeakFilterPole = 0.999;
45 float gLauncherNoiseThreshold = 0.01 * MATRIX_MAX;
46 float gLauncherMinimumPeak = 0.1 * MATRIX_MAX;
47 bool gLauncherTriggered = false;
48
49 // Screen update rate; affects buffer size. Actual contents of buffer
50 // may be smaller than this
51 int gScreenWidth = 512;
52 int gScreenHeight = 512;
53 int gScreenFramesPerSecond = 25;
54
55 // Double buffer for rendering screen. Each is an interleaved buffer
56 // of XY data.
57 float *gScreenBuffer1, *gScreenBuffer2;
58 float *gScreenBufferWrite, *gScreenBufferRead;
59 int gScreenBufferMaxLength; // What is the total buffer allocated?
60 int gScreenBufferReadLength; // How long is the read buffer?
61 int gScreenBufferWriteLength; // How long is the write (next) buffer?
62 int gScreenBufferReadPointer; // Where are we in the read buffer now?
63 int gScreenBufferNextUpdateLocation; // When should we render the next buffer?
64 bool gScreenNextBufferReady; // Is the next buffer ready to go?
65
66 // Auxiliary (low-priority) task for updating the screen
67 AuxiliaryTask gScreenUpdateTask;
68
69 void screen_update();
70
71 // initialise_render() is called once before the audio rendering starts.
72 // Use it to perform any initialisation and allocation which is dependent
73 // on the period size or sample rate.
74 //
75 // userData holds an opaque pointer to a data structure that was passed
76 // in from the call to initAudio().
77 //
78 // Return true on success; returning false halts the program.
79
80 bool initialise_render(int numChannels, int numMatrixFramesPerPeriod,
81 int numAudioFramesPerPeriod, float matrixSampleRate,
82 float audioSampleRate, void *userData)
83 {
84 srandom(time(NULL));
85
86 // Verify we are running with matrix enabled
87 if(numMatrixFramesPerPeriod*2 != numAudioFramesPerPeriod) {
88 rt_printf("Error: this example needs the matrix enabled, running at half audio rate\n");
89 return false;
90 }
91
92 // Initialise the screen buffers
93 gScreenBufferMaxLength = 2 * matrixSampleRate / gScreenFramesPerSecond;
94 gScreenBuffer1 = new float[gScreenBufferMaxLength];
95 gScreenBuffer2 = new float[gScreenBufferMaxLength];
96 if(gScreenBuffer1 == 0 || gScreenBuffer2 == 0) {
97 rt_printf("Error initialising screen buffers\n");
98 return false;
99 }
100
101 gScreenBufferRead = gScreenBuffer1;
102 gScreenBufferWrite = gScreenBuffer2;
103 gScreenBufferReadLength = gScreenBufferWriteLength = 0;
104 gScreenBufferReadPointer = 0;
105 gScreenBufferNextUpdateLocation = 0;
106 gScreenNextBufferReady = false;
107
108 // Initialise the game
109 setupGame(gScreenWidth, gScreenHeight);
110 gGameFrameInterval = matrixSampleRate / gGameFramesPerSecond;
111 gSamplesUntilNextFrame = gGameFrameInterval;
112
113 // Initialise auxiliary tasks
114 if((gScreenUpdateTask = createAuxiliaryTaskLoop(&screen_update, 90,
115 "beaglert-screen-update")) == 0)
116 return false;
117
118 return true;
119 }
120
121 // Swap buffers on the screen
122 void swap_buffers()
123 {
124 if(gScreenBufferRead == gScreenBuffer1) {
125 gScreenBufferRead = gScreenBuffer2;
126 gScreenBufferWrite = gScreenBuffer1;
127 }
128 else {
129 gScreenBufferRead = gScreenBuffer1;
130 gScreenBufferWrite = gScreenBuffer2;
131 }
132
133 gScreenBufferReadLength = gScreenBufferWriteLength;
134 gScreenBufferReadPointer = 0;
135
136 // Schedule next update for 3/4 of the way through the buffer
137 gScreenBufferNextUpdateLocation = gScreenBufferReadLength * 0.75;
138 gScreenNextBufferReady = false;
139 }
140
141 // render() is called regularly at the highest priority by the audio engine.
142 // Input and output are given from the audio hardware and the other
143 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
144 // will be 0.
145
146 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
147 uint16_t *matrixIn, uint16_t *matrixOut)
148 {
149 for(int n = 0; n < numMatrixFrames; n++) {
150 // First-order lowpass filter to remove noise on launch FSR
151 float rawSample = analogRead(gInputLauncher, n);
152 float launchSample = gLauncherFilterPole * gLauncherLastSample +
153 (1.0f - gLauncherFilterPole) * rawSample;
154 gLauncherLastSample = launchSample;
155
156 // Peak-detect on launch signal
157 if(launchSample >= gLauncherPeakValue) {
158 gLauncherPeakValue = launchSample;
159 gLauncherTriggered = false;
160 }
161 else {
162 if(gLauncherPeakValue - launchSample > gLauncherNoiseThreshold && !gLauncherTriggered) {
163 // Detected a peak; is it big enough overall?
164 if(gLauncherPeakValue >= gLauncherMinimumPeak) {
165 gLauncherTriggered = true;
166 // Peak detected-- fire!!
167 // Set both cannon strengths but only one will
168 // fire depending on whose turn it is
169 float strength = map(gLauncherPeakValue,
170 gLauncherMinimumPeak, MATRIX_MAX,
171 0.5f, 10.0f);
172 setTank1CannonStrength(strength);
173 setTank2CannonStrength(strength);
174 fireProjectile();
175 }
176 }
177
178 gLauncherPeakValue *= gLauncherPeakFilterPole;
179 }
180
181 if(--gSamplesUntilNextFrame <= 0) {
182 // Update game physics and cannon angles
183 gSamplesUntilNextFrame = gGameFrameInterval;
184
185 setTank1CannonAngle(map(analogRead(gInputTank1Angle, n),
186 0, MATRIX_MAX, M_PI, 0));
187 setTank2CannonAngle(map(analogRead(gInputTank2Angle, n),
188 0, MATRIX_MAX, M_PI, 0));
189 nextGameFrame();
190 }
191
192 if(gScreenBufferReadPointer >= gScreenBufferReadLength - 1
193 && gScreenNextBufferReady) {
194 // Got to the end; swap buffers
195 swap_buffers();
196 }
197
198 // Push current screen buffer to the matrix output
199 if(gScreenBufferReadPointer < gScreenBufferReadLength - 1) {
200 float x = gScreenBufferRead[gScreenBufferReadPointer++];
201 float y = gScreenBufferRead[gScreenBufferReadPointer++];
202
203 // Rescale screen coordinates to matrix ranges; invert the Y
204 // coordinate to go from normal screen coordinates to scope coordinates
205 analogWrite(gOutputX, n, constrain(map(x, 0, gScreenWidth, 0, MATRIX_MAX), 0, MATRIX_MAX));
206 analogWrite(gOutputY, n, constrain(map(y, 0, gScreenHeight, MATRIX_MAX, 0), 0, MATRIX_MAX));
207 }
208 else {
209 // Still not ready! Write 0 until something happens
210 analogWrite(gOutputX, n, 0);
211 analogWrite(gOutputY, n, 0);
212 }
213
214 if(gameStatusWinner() != 0) {
215 // Blink one LED to show who won
216 // Blink both LEDs when projectile is in motion
217 uint16_t val = (gSampleCounter % 4000 > 2000) ? MATRIX_MAX : 0;
218 analogWrite(gOutputPlayer1LED, n, gameStatusWinner() == 1 ? val : 0);
219 analogWrite(gOutputPlayer2LED, n, gameStatusWinner() == 2 ? val : 0);
220
221 // After 5 seconds, restart the game
222 gSamplesSinceFinish++;
223 if(gSamplesSinceFinish > 22050*5)
224 gGameShouldRestart = true;
225 }
226 else if(gameStatusProjectileInMotion()) {
227 // Blink both LEDs when projectile is in motion
228 uint16_t val = (gSampleCounter % 2000 > 1000) ? MATRIX_MAX : 0;
229 analogWrite(gOutputPlayer1LED, n, val);
230 analogWrite(gOutputPlayer2LED, n, val);
231 }
232 else if(gameStatusPlayer1Turn()) {
233 analogWrite(gOutputPlayer1LED, n, MATRIX_MAX);
234 analogWrite(gOutputPlayer2LED, n, 0);
235 }
236 else {
237 analogWrite(gOutputPlayer2LED, n, MATRIX_MAX);
238 analogWrite(gOutputPlayer1LED, n, 0);
239 }
240
241 // Check if we have reached the point where we should next update
242 if(gScreenBufferReadPointer >= gScreenBufferNextUpdateLocation &&
243 !gScreenNextBufferReady) {
244 // Update the screen at lower priority than the audio thread
245 scheduleAuxiliaryTask(gScreenUpdateTask);
246 }
247
248 gSampleCounter++;
249 }
250 }
251
252 void screen_update()
253 {
254 // If we should restart, reinitialise the game
255 if(gGameShouldRestart) {
256 restartGame();
257 gGameShouldRestart = false;
258 gSamplesSinceFinish = 0;
259 }
260
261 // Render the game based on the current state
262 gScreenBufferWriteLength = drawGame(gScreenBufferWrite, gScreenBufferMaxLength);
263
264 // Flag it as ready to go
265 gScreenNextBufferReady = true;
266 }
267
268 // cleanup_render() is called once at the end, after the audio has stopped.
269 // Release any resources that were allocated in initialise_render().
270
271 void cleanup_render()
272 {
273 // Clean up the game state
274 cleanupGame();
275 }