comparison projects/basic_network/render.cpp @ 235:3d41a6fa1830

Merge
author Giulio Moro <giuliomoro@yahoo.it>
date Sun, 10 Apr 2016 04:08:06 +0200
parents 6a23c07d0fbb
children ac8eb07afcf5
comparison
equal deleted inserted replaced
216:869f5e703844 235:3d41a6fa1830
6 */ 6 */
7 7
8 #include <BeagleRT.h> 8 #include <BeagleRT.h>
9 //#include <rtdk.h> 9 //#include <rtdk.h>
10 #include <cmath> 10 #include <cmath>
11 #include <UdpClient.h> 11 #include <NetworkSend.h>
12 #include <ReceiveAudioThread.h>
12 #include <Utilities.h> 13 #include <Utilities.h>
13
14 AuxiliaryTask transmitReceiveDataTask;
15
16 #define NETWORK_AUDIO_BUFFER_SIZE 400 //1400/4 //maximum payload for a UDP datagram over ethernet is 1472 bytes, I leave some headroom and divide by 4 to get the number of floats
17 struct networkAudio{
18 int timestamp;
19 int currentBuffer;
20 int index;
21 float buffers[2][NETWORK_AUDIO_BUFFER_SIZE];
22 int doneOnTime;
23 bool toBeSent;
24 UdpClient udpClient;
25 };
26
27 float gFrequency;
28 float gPhase;
29 float gInverseSampleRate;
30 int gCount=0;
31 //networkData networkObject;
32 #define numNetAudio 3
33 networkAudio netAudio[numNetAudio];
34 AuxiliaryTask printIntervalTask;
35 AuxiliaryTask transmitReceiveAudioTask;
36
37 void transmitReceiveAudio(){ //transmit and receive audio buffers
38 for(int n=0;n<numNetAudio; n++){
39 if(netAudio[n].toBeSent){
40 netAudio[n].toBeSent=false;
41 netAudio[n].udpClient.send(netAudio[n].buffers[!netAudio[n].currentBuffer],NETWORK_AUDIO_BUFFER_SIZE*sizeof(float));
42 netAudio[n].doneOnTime=1;
43 }
44 }
45 }
46 14
47 // setup() is called once before the audio rendering starts. 15 // setup() is called once before the audio rendering starts.
48 // Use it to perform any initialisation and allocation which is dependent 16 // Use it to perform any initialisation and allocation which is dependent
49 // on the period size or sample rate. 17 // on the period size or sample rate.
50 // 18 //
51 // userData holds an opaque pointer to a data structure that was passed 19 // userData holds an opaque pointer to a data structure that was passed
52 // in from the call to initAudio(). 20 // in from the call to initAudio().
53 // 21 //
54 // Return true on success; returning false halts the program. 22 // Return true on success; returning false halts the program.
23
24 NetworkSend networkSend;
25 ReceiveAudioThread receive;
26 float gFrequency;
27 float gInverseSampleRate;
28 float gPhase;
55 bool setup(BeagleRTContext *context, void *userData) 29 bool setup(BeagleRTContext *context, void *userData)
56 { 30 {
57 // Retrieve a parameter passed in from the initAudio() call 31 // Retrieve a parameter passed in from the initAudio() call
58 gFrequency = *(float *)userData; 32 gFrequency = *(float *)userData;
59 33
34 networkSend.setup(context->audioSampleRate, context->audioFrames, 0, 9999, "192.168.7.1");
35 receive.init(10000, context->audioFrames, 0);
36 receive.startThread();
60 gInverseSampleRate = 1.0 / context->audioSampleRate; 37 gInverseSampleRate = 1.0 / context->audioSampleRate;
61 gPhase = 0.0; 38 gPhase = 0;
62
63 // networkObject.counter=&gCount;
64 // networkObject.variables[0]=&gFrequency;
65 // networkObject.variables[1]=&gPhase;
66 // networkObject.numVariables=2;
67 for(int n=0; n<numNetAudio; n++){
68 netAudio[n].doneOnTime=1;
69 netAudio[n].index=0;
70 netAudio[n].currentBuffer=0;
71 netAudio[n].toBeSent=false;
72 // netAudio[n].udpClient.setPort(settings->transmitPort+n);
73 // netAudio[n].udpClient.setServer(settings->serverName);
74 netAudio[n].udpClient.setPort(9999+n);
75 netAudio[n].udpClient.setServer("192.168.7.1");
76 }
77 // setupSockets(settings->receivePort, settings->transmitPort, settings->serverName);
78
79 // transmitReceiveDataTask=createAuxiliaryTask(*transmitReceiveData, 10, "transmit-receive-data");
80 // scheduleAuxiliaryTask(transmitReceiveDataTask); //here it does not work
81 transmitReceiveAudioTask=BeagleRT_createAuxiliaryTask(*transmitReceiveAudio, 98, "transmit-receive-audio");
82 return true; 39 return true;
83 } 40 }
84 41
85 // render() is called regularly at the highest priority by the audio engine. 42 // render() is called regularly at the highest priority by the audio engine.
86 // Input and output are given from the audio hardware and the other 43 // Input and output are given from the audio hardware and the other
87 // ADCs and DACs (if available). If only audio is available, numMatrixFrames 44 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
88 // will be 0. 45 // will be 0.
89 46
90 void render(BeagleRTContext *context, void *userData) 47 void render(BeagleRTContext *context, void *userData)
91 {/* 48 {
92 for(unsigned int n = 0; n < context->audioFrames; n++) { 49 for(unsigned int n = 0; n < context->audioFrames; n++) {
93 float out = 0.7f * sinf(gPhase); 50 float out = 0.7f * sinf(gPhase);
94 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate; 51 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
95 if(gPhase > 2.0 * M_PI) 52 if(gPhase > 2.0 * M_PI)
96 gPhase -= 2.0 * M_PI; 53 gPhase -= 2.0 * M_PI;
97 54
98 for(unsigned int channel = 0; channel < context->audioChannels; channel++) 55 networkSend.log(out);
99 context->audioOut[n * context->audioChannels + channel] = out; 56 float in;
100 57 int ret = receive.getSamplesSrc(&in, 1, 1);
101 if(gCount == 0){ 58 for(unsigned int channel = 0; channel < context->audioChannels; channel++){
102 BeagleRT_scheduleAuxiliaryTask(transmitReceiveDataTask); 59 audioWriteFrame(context, n, channel, in);
103 } 60 }
104 gCount++;
105 }
106
107
108 */
109 for(int n = 0; n < context->audioFrames; n++) {
110 float out = 0.7f * sinf(gPhase);
111 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
112 if(gPhase > 2.0 * M_PI)
113 gPhase -= 2.0 * M_PI;
114
115 // for(int channel = 0; channel < context->audioChannels; channel++)
116 // context->audioOut[n * context->audioChannels + channel] = context->audioIn[n * context->audioChannels + 0]+context->audioIn[n * context->audioChannels + 1];
117 context->audioOut[n * context->audioChannels] = context->audioIn[n*context->audioChannels+0];
118 context->audioOut[n * context->audioChannels+1]=out;
119 if(0==gCount){
120 // scheduleAuxiliaryTask(transmitReceiveDataTask);
121 }
122 for(int j=0; j<numNetAudio; j++){
123 if(netAudio[j].index==(NETWORK_AUDIO_BUFFER_SIZE)){ // when the buffer is ready ...
124 netAudio[j].toBeSent=true;
125 netAudio[j].index=0; //reset the counter
126 if(netAudio[j].doneOnTime==0)
127 rt_printf("Network buffer underrun :-{\n");
128 netAudio[j].timestamp=gCount;
129 netAudio[j].currentBuffer=!netAudio[j].currentBuffer; //switch buffer
130 netAudio[j].doneOnTime=0;
131 BeagleRT_scheduleAuxiliaryTask(transmitReceiveAudioTask); //send the buffer
132 }
133 }
134 if((gCount&1)==0){
135 netAudio[1].buffers[netAudio[1].currentBuffer][netAudio[1].index++]=analogReadFrame(context,n/2,0)+context->audioOut[n*context->audioChannels + 0];
136 netAudio[2].buffers[netAudio[2].currentBuffer][netAudio[2].index++]=analogReadFrame(context,n/2,1)+context->audioOut[n*context->audioChannels + 0];
137 }
138 netAudio[0].buffers[netAudio[0].currentBuffer][netAudio[0].index++]=0.5*(out+context->audioOut[n*context->audioChannels + 0]);//copy channel 0 to the buffer
139 // netAudio[1].buffers[netAudio[1].currentBuffer][netAudio[1].index++]=0.5*(out+context->audioOut[n*context->audioChannels + 0]);
140 // netAudio[2].buffers[netAudio[2].currentBuffer][netAudio[2].index++]=0.5*(out+context->audioOut[n*context->audioChannels + 0]);
141 gCount++;
142 } 61 }
143 } 62 }
144 63
145 // cleanup() is called once at the end, after the audio has stopped. 64 // cleanup() is called once at the end, after the audio has stopped.
146 // Release any resources that were allocated in setup(). 65 // Release any resources that were allocated in setup().