robert@464
|
1 /*
|
robert@464
|
2 * render.cpp
|
robert@464
|
3 *
|
robert@464
|
4 * Created on: May 28, 2014
|
robert@464
|
5 * Author: Victor Zappi
|
robert@464
|
6 */
|
robert@464
|
7
|
robert@464
|
8 #include <Bela.h>
|
robert@464
|
9 #include <PRU.h>
|
robert@464
|
10
|
robert@464
|
11 #include "StatusLED.h"
|
robert@464
|
12 #include "config.h"
|
robert@464
|
13 #include "OscillatorBank.h"
|
robert@464
|
14 #include "FeedbackOscillator.h"
|
robert@464
|
15 #include "ADSR.h"
|
robert@464
|
16 #include "FIRfilter.h"
|
robert@464
|
17 #include <assert.h>
|
robert@464
|
18 #include <cmath>
|
robert@464
|
19 #include <vector>
|
robert@464
|
20
|
robert@464
|
21 #undef DBOX_CAPE_TEST
|
robert@464
|
22
|
robert@464
|
23 // Mappings from pin numbers on PCB to actual DAC channels
|
robert@464
|
24 // This gives the DAC and ADC connectors the same effective pinout
|
robert@464
|
25 // Update June 2016: this is no longer needed in the latest Bela
|
robert@464
|
26 // release, but is kept here for convenience: it used to be
|
robert@464
|
27 // 6 4 2 0 1 3 5 7 for the DAC pins
|
robert@464
|
28 #define DAC_PIN0 0
|
robert@464
|
29 #define DAC_PIN1 1
|
robert@464
|
30 #define DAC_PIN2 2
|
robert@464
|
31 #define DAC_PIN3 3
|
robert@464
|
32 #define DAC_PIN4 4
|
robert@464
|
33 #define DAC_PIN5 5
|
robert@464
|
34 #define DAC_PIN6 6
|
robert@464
|
35 #define DAC_PIN7 7
|
robert@464
|
36
|
robert@464
|
37 #define ADC_PIN0 0
|
robert@464
|
38 #define ADC_PIN1 1
|
robert@464
|
39 #define ADC_PIN2 2
|
robert@464
|
40 #define ADC_PIN3 3
|
robert@464
|
41 #define ADC_PIN4 4
|
robert@464
|
42 #define ADC_PIN5 5
|
robert@464
|
43 #define ADC_PIN6 6
|
robert@464
|
44 #define ADC_PIN7 7
|
robert@464
|
45
|
robert@464
|
46 #define N_OCT 4.0 // maximum number of octaves on sensor 1
|
robert@464
|
47
|
robert@464
|
48 extern vector<OscillatorBank*> gOscBanks;
|
robert@464
|
49 extern int gCurrentOscBank;
|
robert@464
|
50 extern int gNextOscBank;
|
robert@464
|
51 extern PRU *gPRU;
|
robert@464
|
52 extern StatusLED gStatusLED;
|
robert@464
|
53 extern bool gIsLoading;
|
robert@464
|
54 extern bool gAudioIn;
|
robert@464
|
55
|
robert@464
|
56 float *gOscillatorBuffer1, *gOscillatorBuffer2;
|
robert@464
|
57 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
|
robert@464
|
58 int gOscillatorBufferReadPointer = 0;
|
robert@464
|
59 int gOscillatorBufferReadCurrentSize = 0;
|
robert@464
|
60 int gOscillatorBufferWriteCurrentSize = 0;
|
robert@464
|
61 bool gOscillatorNeedsRender = false;
|
robert@464
|
62
|
robert@464
|
63 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
|
robert@464
|
64
|
robert@464
|
65 // Wavetable which changes in response to an oscillator
|
robert@464
|
66 float *gDynamicWavetable;
|
robert@464
|
67 int gDynamicWavetableLength;
|
robert@464
|
68 bool gDynamicWavetableNeedsRender = false;
|
robert@464
|
69
|
robert@464
|
70 // These variables handle the hysteresis oscillator used for setting the playback speed
|
robert@464
|
71 bool gSpeedHysteresisOscillatorRising = false;
|
robert@464
|
72 int gSpeedHysteresisLastTrigger = 0;
|
robert@464
|
73
|
robert@464
|
74 // These variables handle the feedback oscillator used for controlling the wavetable
|
robert@464
|
75 FeedbackOscillator gFeedbackOscillator;
|
robert@464
|
76 float *gFeedbackOscillatorTable;
|
robert@464
|
77 int gFeedbackOscillatorTableLength;
|
robert@464
|
78
|
robert@464
|
79 // This comes from sensor.cpp where it records the most recent touch location on
|
robert@464
|
80 // sensor 0.
|
robert@464
|
81 extern float gSensor0LatestTouchPos;
|
robert@464
|
82 extern int gSensor0LatestTouchNum;
|
robert@464
|
83 float gPitchLatestInput = 0;
|
robert@464
|
84
|
robert@464
|
85 extern float gSensor1LatestTouchPos[];
|
robert@464
|
86 //extern float gSensor1LatestTouchSizes[];
|
robert@464
|
87 extern int gSensor1LatestTouchCount;
|
robert@464
|
88 extern int gSensor1LatestTouchIndex;
|
robert@464
|
89 int gSensor1LastTouchIndex = -1;
|
robert@464
|
90 int gSensor1InputDelayCounter = -1;
|
robert@464
|
91 int gSensor1InputIndex = 0;
|
robert@464
|
92 float gSensor1MatrixTouchPos[5] = {0};
|
robert@464
|
93
|
robert@464
|
94 // FSR value from matrix input
|
robert@464
|
95 extern int gLastFSRValue;
|
robert@464
|
96
|
robert@464
|
97 // Loop points from matrix input 4
|
robert@464
|
98 const int gLoopPointsInputBufferSize = 256;
|
robert@464
|
99 float gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
|
robert@464
|
100 int gLoopPointsInputBufferPointer = 0;
|
robert@464
|
101 float gLoopPointMin = 0, gLoopPointMax = 0;
|
robert@464
|
102
|
robert@464
|
103 // multiplier to activate or mute audio in
|
robert@464
|
104 int audioInStatus = 0;
|
robert@464
|
105
|
robert@464
|
106 // xenomai timer
|
robert@464
|
107 SRTIME prevChangeNs = 0;
|
robert@464
|
108
|
robert@464
|
109 // pitch vars
|
robert@464
|
110 float octaveSplitter;
|
robert@464
|
111 float semitones[((int)N_OCT*12)+1];
|
robert@464
|
112 float deltaTouch = 0;
|
robert@464
|
113 float deltaWeightP = 0.5 / 65536.0;
|
robert@464
|
114 float deltaWeightI = 0.0005 / 65536.0;
|
robert@464
|
115
|
robert@464
|
116 // filter vars
|
robert@464
|
117 ne10_fir_instance_f32_t filter[2];
|
robert@464
|
118 ne10_float32_t *filterIn[2];
|
robert@464
|
119 ne10_float32_t *filterOut[2];
|
robert@464
|
120 ne10_uint32_t blockSize;
|
robert@464
|
121 ne10_float32_t *filterState[2];
|
robert@464
|
122 ne10_float32_t prevFiltered[2];
|
robert@464
|
123 int filterGain = 80;
|
robert@464
|
124 ADSR PeakBurst[2];
|
robert@464
|
125 float peak[2];
|
robert@464
|
126 float peakThresh = 0.2;
|
robert@464
|
127
|
robert@464
|
128 // Tasks for lower-priority calculation
|
robert@464
|
129 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
|
robert@464
|
130
|
robert@464
|
131
|
robert@464
|
132 extern "C" {
|
robert@464
|
133 // Function prototype for ARM assembly implementation of oscillator bank
|
robert@464
|
134 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
robert@464
|
135 int activePartialNum, int lookupTableSize,
|
robert@464
|
136 float *phases, float *frequencies, float *amplitudes,
|
robert@464
|
137 float *freqDerivatives, float *ampDerivatives,
|
robert@464
|
138 float *lookupTable);
|
robert@464
|
139
|
robert@464
|
140 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
|
robert@464
|
141 float *tableIn, float *tableOut);
|
robert@464
|
142 }
|
robert@464
|
143
|
robert@464
|
144 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
robert@464
|
145 float *tableIn, float *tableOut,
|
robert@464
|
146 float *sineTable, float sineMix);
|
robert@464
|
147
|
robert@464
|
148 inline float hysteresis_oscillator(float input, float risingThreshold,
|
robert@464
|
149 float fallingThreshold, bool *rising);
|
robert@464
|
150
|
robert@464
|
151 void render_medium_prio();
|
robert@464
|
152 void render_low_prio();
|
robert@464
|
153
|
robert@464
|
154 #ifdef DBOX_CAPE_TEST
|
robert@464
|
155 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
robert@464
|
156 uint16_t *matrixIn, uint16_t *matrixOut);
|
robert@464
|
157 #endif
|
robert@464
|
158
|
robert@464
|
159 bool setup(BelaContext *context, void *userData) {
|
robert@464
|
160 int oscBankHopSize = *(int *)userData;
|
robert@464
|
161
|
chris@543
|
162 if(context->analogOutChannels <= 8 || context->analogInChannels <= 8) {
|
chris@543
|
163 printf("Error: D-Box needs at least 8 analog IO channels.\n");
|
chris@543
|
164 return false;
|
chris@543
|
165 }
|
chris@543
|
166
|
chris@543
|
167 if(context->audioInChannels != context->audioOutChannels ||
|
chris@543
|
168 context->analogInChannels != context-> analogOutChannels){
|
chris@543
|
169 printf("Error: for this project, you need the same number of input and output channels.\n");
|
robert@464
|
170 return false;
|
robert@464
|
171 }
|
robert@464
|
172
|
robert@464
|
173 // Allocate two buffers for rendering oscillator bank samples
|
robert@464
|
174 // One will be used for writing in the background while the other is used for reading
|
robert@464
|
175 // on the audio thread. 8-byte alignment needed for the NEON code.
|
chris@543
|
176 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * context->audioOutChannels * sizeof(float))) {
|
robert@464
|
177 printf("Error allocating render buffers\n");
|
robert@464
|
178 return false;
|
robert@464
|
179 }
|
chris@543
|
180 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * context->audioOutChannels * sizeof(float))) {
|
robert@464
|
181 printf("Error allocating render buffers\n");
|
robert@464
|
182 return false;
|
robert@464
|
183 }
|
robert@464
|
184 gOscillatorBufferWrite = gOscillatorBuffer1;
|
robert@464
|
185 gOscillatorBufferRead = gOscillatorBuffer2;
|
robert@464
|
186
|
chris@543
|
187 memset(gOscillatorBuffer1, 0, oscBankHopSize * context->audioOutChannels * sizeof(float));
|
chris@543
|
188 memset(gOscillatorBuffer2, 0, oscBankHopSize * context->audioOutChannels * sizeof(float));
|
robert@464
|
189
|
robert@464
|
190 // Initialise the dynamic wavetable used by the oscillator bank
|
robert@464
|
191 // It should match the size of the static one already allocated in the OscillatorBank object
|
robert@464
|
192 // Don't forget a guard point at the end of the table
|
robert@464
|
193 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
|
robert@464
|
194 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
|
robert@464
|
195 printf("Error allocating wavetable\n");
|
robert@464
|
196 return false;
|
robert@464
|
197 }
|
robert@464
|
198
|
robert@464
|
199 gFeedbackOscillator.initialise(8192, 10.0, context->analogSampleRate);
|
robert@464
|
200
|
robert@464
|
201 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
|
robert@464
|
202 gDynamicWavetable[n] = 0;
|
robert@464
|
203
|
robert@464
|
204 // pitch
|
robert@464
|
205 float midPos = 0.5;
|
robert@464
|
206 octaveSplitter = 1.0 / N_OCT;
|
robert@464
|
207 int numOfSemi = 12*N_OCT;
|
robert@464
|
208 int middleSemitone = 12*N_OCT/2;
|
robert@464
|
209 int lastSemitone = middleSemitone+numOfSemi/2;
|
robert@464
|
210 float inc = 1.0 / (N_OCT*12.0);
|
robert@464
|
211 int i = -1;
|
robert@464
|
212 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
|
robert@464
|
213 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
|
robert@464
|
214 i = 0;
|
robert@464
|
215 for(int semi=middleSemitone-1; semi>=0; semi--)
|
robert@464
|
216 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
|
robert@464
|
217
|
robert@464
|
218 if(gAudioIn)
|
robert@464
|
219 audioInStatus = 1;
|
robert@464
|
220
|
robert@464
|
221 // filter
|
robert@464
|
222 blockSize = context->audioFrames;
|
robert@464
|
223 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
robert@464
|
224 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
robert@464
|
225 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
robert@464
|
226 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
robert@464
|
227 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
robert@464
|
228 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
robert@464
|
229 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
|
robert@464
|
230 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
|
robert@464
|
231
|
robert@464
|
232 // peak outputs
|
robert@464
|
233 PeakBurst[0].setAttackRate(.00001 * context->analogSampleRate);
|
robert@464
|
234 PeakBurst[1].setAttackRate(.00001 * context->analogSampleRate);
|
robert@464
|
235 PeakBurst[0].setDecayRate(.5 * context->analogSampleRate);
|
robert@464
|
236 PeakBurst[1].setDecayRate(.5 * context->analogSampleRate);
|
robert@464
|
237 PeakBurst[0].setSustainLevel(0.0);
|
robert@464
|
238 PeakBurst[1].setSustainLevel(0.0);
|
robert@464
|
239
|
robert@464
|
240 // Initialise auxiliary tasks
|
robert@464
|
241 if((gMediumPriorityRender = Bela_createAuxiliaryTask(&render_medium_prio, BELA_AUDIO_PRIORITY - 10, "dbox-calculation-medium")) == 0)
|
robert@464
|
242 return false;
|
robert@464
|
243 if((gLowPriorityRender = Bela_createAuxiliaryTask(&render_low_prio, BELA_AUDIO_PRIORITY - 15, "dbox-calculation-low")) == 0)
|
robert@464
|
244 return false;
|
robert@464
|
245
|
robert@464
|
246 return true;
|
robert@464
|
247 }
|
robert@464
|
248
|
robert@464
|
249 void render(BelaContext *context, void *userData)
|
robert@464
|
250 {
|
robert@464
|
251 #ifdef DBOX_CAPE_TEST
|
robert@464
|
252 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
|
robert@464
|
253 #else
|
robert@464
|
254 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
|
robert@464
|
255 gOscBanks[gCurrentOscBank]->resetOscillators();
|
robert@464
|
256
|
robert@464
|
257 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
|
robert@464
|
258 {
|
chris@543
|
259 assert(context->audioOutChannels == 2);
|
robert@464
|
260
|
robert@464
|
261 #ifdef OLD_OSCBANK
|
robert@464
|
262 memset(audioOut, 0, numAudioFrames * * sizeof(float));
|
robert@464
|
263
|
robert@464
|
264 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
|
robert@464
|
265 * and it strips out all extra checks, so find out in advance whether we can render a whole
|
robert@464
|
266 * block or whether the frame will increment in the middle of this buffer.
|
robert@464
|
267 */
|
robert@464
|
268
|
robert@464
|
269 int framesRemaining = numAudioFrames;
|
robert@464
|
270 float *audioOutWithOffset = audioOut;
|
robert@464
|
271
|
robert@464
|
272 while(framesRemaining > 0) {
|
robert@464
|
273 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
|
robert@464
|
274 /* More frames left in this hop than we need this time. Render and finish */
|
robert@464
|
275 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
|
robert@464
|
276 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
robert@464
|
277 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
robert@464
|
278 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
robert@464
|
279 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
robert@464
|
280 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
robert@464
|
281 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
robert@464
|
282 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
|
robert@464
|
283 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
|
robert@464
|
284 gOscBanks[gCurrentOscBank]->nextHop();
|
robert@464
|
285 framesRemaining = 0;
|
robert@464
|
286 }
|
robert@464
|
287 else {
|
robert@464
|
288 /* More frames to render than are left in this hop. Render and decrement the
|
robert@464
|
289 * number of remaining frames; then advance to the next oscillator frame.
|
robert@464
|
290 */
|
robert@464
|
291 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
|
robert@464
|
292 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
robert@464
|
293 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
robert@464
|
294 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
robert@464
|
295 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
robert@464
|
296 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
robert@464
|
297 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
robert@464
|
298 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
|
robert@464
|
299 audioOutWithOffset += * gOscBanks[gCurrentOscBank]->hopCounter;
|
robert@464
|
300 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
|
robert@464
|
301 gOscBanks[gCurrentOscBank]->nextHop();
|
robert@464
|
302 }
|
robert@464
|
303 }
|
robert@464
|
304 #else
|
robert@464
|
305 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
robert@464
|
306 context->audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n]*audioInStatus;
|
robert@464
|
307 context->audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+context->audioIn[2*n+1]*audioInStatus;
|
robert@464
|
308
|
robert@464
|
309 filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1
|
robert@464
|
310 filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2
|
robert@464
|
311
|
robert@464
|
312 /* FIXME why doesn't this work? */
|
robert@464
|
313 /*
|
robert@464
|
314 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
|
robert@464
|
315 gOscillatorNeedsRender = true;
|
robert@464
|
316 scheduleAuxiliaryTask(gLowPriorityRender);
|
robert@464
|
317 } */
|
robert@464
|
318
|
robert@464
|
319 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
|
robert@464
|
320 // Finished reading from the buffer: swap to the next buffer
|
robert@464
|
321 if(gOscillatorBufferRead == gOscillatorBuffer1) {
|
robert@464
|
322 gOscillatorBufferRead = gOscillatorBuffer2;
|
robert@464
|
323 gOscillatorBufferWrite = gOscillatorBuffer1;
|
robert@464
|
324 }
|
robert@464
|
325 else {
|
robert@464
|
326 gOscillatorBufferRead = gOscillatorBuffer1;
|
robert@464
|
327 gOscillatorBufferWrite = gOscillatorBuffer2;
|
robert@464
|
328 }
|
robert@464
|
329
|
robert@464
|
330 // New buffer size is whatever finished writing last hop
|
robert@464
|
331 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
|
robert@464
|
332 gOscillatorBufferReadPointer = 0;
|
robert@464
|
333
|
robert@464
|
334 gOscillatorNeedsRender = true;
|
robert@464
|
335 Bela_scheduleAuxiliaryTask(gMediumPriorityRender);
|
robert@464
|
336 }
|
robert@464
|
337 }
|
robert@464
|
338 #endif
|
robert@464
|
339 }
|
robert@464
|
340 else
|
robert@464
|
341 {
|
robert@464
|
342 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
robert@464
|
343 context->audioOut[2*n] = context->audioIn[2*n]*audioInStatus;
|
robert@464
|
344 context->audioOut[2*n + 1] = context->audioIn[2*n+1]*audioInStatus;
|
robert@464
|
345
|
robert@464
|
346 filterIn[0][n] = fabs(context->audioIn[2*n]); // rectify for peak detection in 1
|
robert@464
|
347 filterIn[1][n] = fabs(context->audioIn[2*n+1]); // rectify for peak detection in 2
|
robert@464
|
348 }
|
robert@464
|
349 }
|
robert@464
|
350
|
robert@464
|
351 // low pass filter audio in 1 and 2 for peak detection
|
robert@464
|
352 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
|
robert@464
|
353 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
|
robert@464
|
354
|
robert@464
|
355 for(unsigned int n = 0; n < context->analogFrames; n++) {
|
robert@464
|
356
|
robert@464
|
357
|
robert@464
|
358 /* Matrix Out 0, In 0
|
robert@464
|
359 *
|
robert@464
|
360 * CV loop
|
robert@464
|
361 * Controls pitch of sound
|
robert@464
|
362 */
|
robert@464
|
363 float touchPosInt = gSensor0LatestTouchPos;
|
robert@464
|
364 if(touchPosInt < 0) touchPosInt = 0;
|
robert@464
|
365 if(touchPosInt > 1.0) touchPosInt = 1.0;
|
robert@464
|
366 context->analogOut[n*8 + DAC_PIN0] = touchPosInt;
|
robert@464
|
367
|
robert@464
|
368 gPitchLatestInput = context->analogIn[n*8 + ADC_PIN0];
|
robert@464
|
369
|
robert@464
|
370
|
robert@464
|
371 /* Matrix Out 7
|
robert@464
|
372 *
|
robert@464
|
373 * Loop feedback with Matrix In 0
|
robert@464
|
374 * Controls discreet pitch
|
robert@464
|
375 */
|
robert@464
|
376 float deltaTarget = 0;
|
robert@464
|
377 int semitoneIndex = 0;
|
robert@464
|
378 if(gSensor0LatestTouchNum>0)
|
robert@464
|
379 {
|
robert@464
|
380 // current pitch is gPitchLatestInput, already retrieved
|
robert@464
|
381 semitoneIndex = ( gPitchLatestInput * 12 * N_OCT )+0.5; // closest semitone
|
robert@464
|
382 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
|
robert@464
|
383 deltaTouch += deltaTarget*(deltaWeightI); // update feedback [previous + current]
|
robert@464
|
384 }
|
robert@464
|
385 else
|
robert@464
|
386 deltaTouch = 0;
|
robert@464
|
387
|
robert@464
|
388 float nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
|
robert@464
|
389 if(nextOut < 0) nextOut = 0; // clamp
|
robert@464
|
390 if(nextOut > 1.0) nextOut = 1.0; // clamp
|
robert@464
|
391 context->analogOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
|
robert@464
|
392
|
robert@464
|
393
|
robert@464
|
394 /*
|
robert@464
|
395 * Matrix Out 1, In 1
|
robert@464
|
396 *
|
robert@464
|
397 * Hysteresis (comparator) oscillator
|
robert@464
|
398 * Controls speed of playback
|
robert@464
|
399 */
|
robert@464
|
400 bool wasRising = gSpeedHysteresisOscillatorRising;
|
robert@464
|
401 context->analogOut[n*8 + DAC_PIN1] = hysteresis_oscillator(context->analogIn[n*8 + ADC_PIN1], 48000.0/65536.0,
|
robert@464
|
402 16000.0/65536.0, &gSpeedHysteresisOscillatorRising);
|
robert@464
|
403
|
robert@464
|
404 // Find interval of zero crossing
|
robert@464
|
405 if(wasRising && !gSpeedHysteresisOscillatorRising) {
|
robert@464
|
406 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
|
robert@464
|
407
|
robert@464
|
408 // Interval since last trigger will be the new hop size; calculate to set speed
|
robert@464
|
409 if(interval < 1)
|
robert@464
|
410 interval = 1;
|
robert@464
|
411 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
|
robert@464
|
412 float speed = 144.0 / interval; // Normalise to a fixed expected speed
|
robert@464
|
413 gOscBanks[gCurrentOscBank]->setSpeed(speed);
|
robert@464
|
414
|
robert@464
|
415 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
|
robert@464
|
416 }
|
robert@464
|
417
|
robert@464
|
418 /*
|
robert@464
|
419 * Matrix Out 2, In 2
|
robert@464
|
420 *
|
robert@464
|
421 * Feedback (phase shift) oscillator
|
robert@464
|
422 * Controls wavetable used for oscillator bank
|
robert@464
|
423 */
|
robert@464
|
424
|
robert@464
|
425 int tableLength = gFeedbackOscillator.process(context->analogIn[n*8 + ADC_PIN2], &context->analogOut[n*8 + DAC_PIN2]);
|
robert@464
|
426 if(tableLength != 0) {
|
robert@464
|
427 gFeedbackOscillatorTableLength = tableLength;
|
robert@464
|
428 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
|
robert@464
|
429 gDynamicWavetableNeedsRender = true;
|
robert@464
|
430 Bela_scheduleAuxiliaryTask(gLowPriorityRender);
|
robert@464
|
431 }
|
robert@464
|
432
|
robert@464
|
433 /*
|
robert@464
|
434 * Matrix Out 3, In 3
|
robert@464
|
435 *
|
robert@464
|
436 * CV loop with delay for time alignment
|
robert@464
|
437 * Touch positions from sensor 1
|
robert@464
|
438 * Change every 32 samples (ca. 1.5 ms)
|
robert@464
|
439 */
|
robert@464
|
440 volatile int touchCount = gSensor1LatestTouchCount;
|
robert@464
|
441 if(touchCount == 0)
|
robert@464
|
442 context->analogOut[n*8 + DAC_PIN3] = 0;
|
robert@464
|
443 else {
|
robert@464
|
444 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
|
robert@464
|
445 context->analogOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f / 65536.0f;
|
robert@464
|
446 if(touchIndex != gSensor1LastTouchIndex) {
|
robert@464
|
447 // Just changed to a new touch output. Reset the counter.
|
robert@464
|
448 // It will take 2*matrixFrames samples for this output to come back to the
|
robert@464
|
449 // ADC input. But we also want to read near the end of the 32 sample block;
|
robert@464
|
450 // let's say 24 samples into it.
|
robert@464
|
451
|
robert@464
|
452 // FIXME this won't work for p > 2
|
robert@464
|
453 gSensor1InputDelayCounter = 24 + 2*context->analogFrames;
|
robert@464
|
454 gSensor1InputIndex = touchIndex;
|
robert@464
|
455 }
|
robert@464
|
456 gSensor1LastTouchIndex = touchIndex;
|
robert@464
|
457 }
|
robert@464
|
458
|
robert@464
|
459 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
|
robert@464
|
460 gSensor1MatrixTouchPos[gSensor1InputIndex] = context->analogIn[n*8 + ADC_PIN3];
|
robert@464
|
461 }
|
robert@464
|
462
|
robert@464
|
463 /* Matrix Out 4
|
robert@464
|
464 *
|
robert@464
|
465 * Sensor 1 last pos
|
robert@464
|
466 */
|
robert@464
|
467 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex];
|
robert@464
|
468 if(touchPosInt < 0) touchPosInt = 0;
|
robert@464
|
469 if(touchPosInt > 1.0) touchPosInt = 1.0;
|
robert@464
|
470 context->analogOut[n*8 + DAC_PIN4] = touchPosInt;
|
robert@464
|
471
|
robert@464
|
472 /* Matrix In 4
|
robert@464
|
473 *
|
robert@464
|
474 * Loop points selector
|
robert@464
|
475 */
|
robert@464
|
476 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = context->analogIn[n*8 + ADC_PIN4];
|
robert@464
|
477 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
|
robert@464
|
478 // Find min and max values
|
robert@464
|
479 float loopMax = 0, loopMin = 1.0;
|
robert@464
|
480 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
robert@464
|
481 if(gLoopPointsInputBuffer[i] < loopMin)
|
robert@464
|
482 loopMin = gLoopPointsInputBuffer[i];
|
robert@464
|
483 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
|
robert@464
|
484 loopMax = gLoopPointsInputBuffer[i];
|
robert@464
|
485 }
|
robert@464
|
486
|
robert@464
|
487 if(loopMin >= loopMax)
|
robert@464
|
488 loopMax = loopMin;
|
robert@464
|
489
|
robert@464
|
490 gLoopPointMax = loopMax;
|
robert@464
|
491 gLoopPointMin = loopMin;
|
robert@464
|
492 gLoopPointsInputBufferPointer = 0;
|
robert@464
|
493 }
|
robert@464
|
494
|
robert@464
|
495 /* Matrix Out 5
|
robert@464
|
496 *
|
robert@464
|
497 * Audio In 1 peak detection and peak burst output
|
robert@464
|
498 */
|
robert@464
|
499
|
robert@464
|
500 filterOut[0][n*2+1] *= filterGain;
|
robert@464
|
501 float burstOut = PeakBurst[0].getOutput();
|
robert@464
|
502 if( burstOut < 0.1)
|
robert@464
|
503 {
|
robert@464
|
504 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
|
robert@464
|
505 {
|
robert@464
|
506 peak[0] = prevFiltered[0];
|
robert@464
|
507 PeakBurst[0].gate(1);
|
robert@464
|
508 }
|
robert@464
|
509 }
|
robert@464
|
510
|
robert@464
|
511 PeakBurst[0].process(1);
|
robert@464
|
512
|
robert@464
|
513 float convAudio = burstOut*peak[0];
|
robert@464
|
514 context->analogOut[n*8 + DAC_PIN5] = convAudio;
|
robert@464
|
515 prevFiltered[0] = filterOut[0][n*2+1];
|
robert@464
|
516 if(prevFiltered[0]>1)
|
robert@464
|
517 prevFiltered[0] = 1;
|
robert@464
|
518
|
robert@464
|
519 /* Matrix In 5
|
robert@464
|
520 *
|
robert@464
|
521 * Dissonance, via changing frequency motion of partials
|
robert@464
|
522 */
|
robert@464
|
523 float amount = (float)context->analogIn[n*8 + ADC_PIN5];
|
robert@464
|
524 gOscBanks[gCurrentOscBank]->freqMovement = 1.0 - amount;
|
robert@464
|
525
|
robert@464
|
526
|
robert@464
|
527
|
robert@464
|
528
|
robert@464
|
529 /* Matrix Out 6
|
robert@464
|
530 *
|
robert@464
|
531 * Audio In 2 peak detection and peak burst output
|
robert@464
|
532 */
|
robert@464
|
533
|
robert@464
|
534 filterOut[1][n*2+1] *= filterGain;
|
robert@464
|
535 burstOut = PeakBurst[1].getOutput();
|
robert@464
|
536 if( burstOut < 0.1)
|
robert@464
|
537 {
|
robert@464
|
538 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
|
robert@464
|
539 {
|
robert@464
|
540 peak[1] = prevFiltered[1];
|
robert@464
|
541 PeakBurst[1].gate(1);
|
robert@464
|
542 }
|
robert@464
|
543 }
|
robert@464
|
544
|
robert@464
|
545 PeakBurst[1].process(1);
|
robert@464
|
546
|
robert@464
|
547 convAudio = burstOut*peak[1];
|
robert@464
|
548 context->analogOut[n*8 + DAC_PIN6] = convAudio;
|
robert@464
|
549 prevFiltered[1] = filterOut[1][n*2+1];
|
robert@464
|
550 if(prevFiltered[1]>1)
|
robert@464
|
551 prevFiltered[1] = 1;
|
robert@464
|
552
|
robert@464
|
553 /* Matrix In 6
|
robert@464
|
554 *
|
robert@464
|
555 * Sound selector
|
robert@464
|
556 */
|
robert@464
|
557 if(!gIsLoading) {
|
robert@464
|
558 // Use hysteresis to avoid jumping back and forth between sounds
|
robert@464
|
559 if(gOscBanks.size() > 1) {
|
robert@464
|
560 float input = context->analogIn[n*8 + ADC_PIN6];
|
robert@464
|
561 const float hystValue = 16000.0 / 65536.0;
|
robert@464
|
562
|
robert@464
|
563 float upHysteresisValue = ((gCurrentOscBank + 1) + hystValue) / gOscBanks.size();
|
robert@464
|
564 float downHysteresisValue = (gCurrentOscBank - hystValue) / gOscBanks.size();
|
robert@464
|
565
|
robert@464
|
566 if(input > upHysteresisValue || input < downHysteresisValue) {
|
robert@464
|
567 gNextOscBank = input * gOscBanks.size();
|
robert@464
|
568 if(gNextOscBank < 0)
|
robert@464
|
569 gNextOscBank = 0;
|
robert@464
|
570 if((unsigned)gNextOscBank >= gOscBanks.size())
|
robert@464
|
571 gNextOscBank = gOscBanks.size() - 1;
|
robert@464
|
572 }
|
robert@464
|
573 }
|
robert@464
|
574 }
|
robert@464
|
575
|
robert@464
|
576 /*
|
robert@464
|
577 * Matrix In 7
|
robert@464
|
578 *
|
robert@464
|
579 * FSR from primary touch sensor
|
robert@464
|
580 * Value ranges from 0-1799
|
robert@464
|
581 */
|
robert@464
|
582 gLastFSRValue = context->analogIn[n*8 + ADC_PIN7] * 1799.0;
|
robert@464
|
583 //gLastFSRValue = 1799 - context->analogIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
robert@464
|
584 //dbox_printf("%i\n",gLastFSRValue);
|
robert@464
|
585
|
robert@464
|
586 gMatrixSampleCount++;
|
robert@464
|
587 }
|
robert@464
|
588
|
robert@464
|
589 #endif /* DBOX_CAPE_TEST */
|
robert@464
|
590 }
|
robert@464
|
591
|
robert@464
|
592 // Medium-priority render function used for audio hop calculations
|
robert@464
|
593 void render_medium_prio()
|
robert@464
|
594 {
|
robert@464
|
595
|
robert@464
|
596 if(gOscillatorNeedsRender) {
|
robert@464
|
597 gOscillatorNeedsRender = false;
|
robert@464
|
598
|
robert@464
|
599 /* Render one frame into the write buffer */
|
robert@464
|
600 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * 2 * sizeof(float)); /* assumes 2 audio channels */
|
robert@464
|
601
|
robert@464
|
602 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
|
robert@464
|
603 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
robert@464
|
604 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
robert@464
|
605 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
robert@464
|
606 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
robert@464
|
607 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
robert@464
|
608 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
|
robert@464
|
609
|
robert@464
|
610 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * 2;
|
robert@464
|
611
|
robert@464
|
612 /* Update the pitch right before the hop
|
robert@464
|
613 * Total CV range +/- N_OCT octaves
|
robert@464
|
614 */
|
robert@464
|
615 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
|
robert@464
|
616 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
|
robert@464
|
617 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
|
robert@464
|
618
|
robert@464
|
619 #ifdef FIXME_LATER // This doesn't work very well yet
|
robert@464
|
620 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
|
robert@464
|
621 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
|
robert@464
|
622 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
|
robert@464
|
623 {
|
robert@464
|
624 // touch pos is linear but freqs are log
|
robert@464
|
625 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
|
robert@464
|
626 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
|
robert@464
|
627 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
|
robert@464
|
628 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
|
robert@464
|
629 else
|
robert@464
|
630 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
|
robert@464
|
631 }
|
robert@464
|
632 #endif
|
robert@464
|
633
|
robert@464
|
634 RTIME ticks = rt_timer_read();
|
robert@464
|
635 SRTIME ns = rt_timer_tsc2ns(ticks);
|
robert@464
|
636 SRTIME delta = ns-prevChangeNs;
|
robert@464
|
637
|
robert@464
|
638 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
|
robert@464
|
639 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
|
robert@464
|
640
|
robert@464
|
641 /*printf("ticks %llu\n", (unsigned long long)ticks);
|
robert@464
|
642 printf("ns %llu\n", (unsigned long long)ns);
|
robert@464
|
643 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
|
robert@464
|
644 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
|
robert@464
|
645
|
robert@464
|
646 prevChangeNs = ns;
|
robert@464
|
647 dbox_printf("Changing to bank %d...\n", gNextOscBank);
|
robert@464
|
648 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
|
robert@464
|
649 gOscBanks[gCurrentOscBank]->stop();
|
robert@464
|
650 }
|
robert@464
|
651
|
robert@464
|
652 gCurrentOscBank = gNextOscBank;
|
robert@464
|
653 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
|
robert@464
|
654 }
|
robert@464
|
655 else {
|
robert@464
|
656 /* Advance to the next oscillator frame */
|
robert@464
|
657 gOscBanks[gCurrentOscBank]->nextHop();
|
robert@464
|
658 }
|
robert@464
|
659 }
|
robert@464
|
660 }
|
robert@464
|
661
|
robert@464
|
662 // Lower-priority render function which performs matrix calculations
|
robert@464
|
663 // State should be transferred in via global variables
|
robert@464
|
664 void render_low_prio()
|
robert@464
|
665 {
|
robert@464
|
666 gPRU->setGPIOTestPin();
|
robert@464
|
667 if(gDynamicWavetableNeedsRender) {
|
robert@464
|
668 // Find amplitude of wavetable
|
robert@464
|
669 float meanAmplitude = 0;
|
robert@464
|
670 float sineMix;
|
robert@464
|
671
|
robert@464
|
672 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
|
robert@464
|
673 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
|
robert@464
|
674 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
|
robert@464
|
675 }
|
robert@464
|
676 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
|
robert@464
|
677
|
robert@464
|
678 if(meanAmplitude > 0.35)
|
robert@464
|
679 sineMix = 0;
|
robert@464
|
680 else
|
robert@464
|
681 sineMix = (.35 - meanAmplitude) / .35;
|
robert@464
|
682
|
robert@464
|
683 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
|
robert@464
|
684
|
robert@464
|
685 // Copy to main wavetable
|
robert@464
|
686 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
|
robert@464
|
687 gFeedbackOscillatorTable, gDynamicWavetable,
|
robert@464
|
688 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
|
robert@464
|
689 }
|
robert@464
|
690
|
robert@464
|
691 if(gLoopPointMin >= 60000.0/65536.0 && gLoopPointMax >= 60000.0/65536.0) {
|
robert@464
|
692 // KLUDGE!
|
robert@464
|
693 if(gCurrentOscBank == 0)
|
robert@464
|
694 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
|
robert@464
|
695 else
|
robert@464
|
696 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
|
robert@464
|
697 }
|
robert@464
|
698 else {
|
robert@464
|
699 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop();
|
robert@464
|
700 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop();
|
robert@464
|
701
|
robert@464
|
702 int intLoopPointMin = normLoopPointMin;
|
robert@464
|
703 if(intLoopPointMin < 1)
|
robert@464
|
704 intLoopPointMin = 1;
|
robert@464
|
705 int intLoopPointMax = normLoopPointMax;
|
robert@464
|
706 if(intLoopPointMax <= intLoopPointMin)
|
robert@464
|
707 intLoopPointMax = intLoopPointMin + 1;
|
robert@464
|
708 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
|
robert@464
|
709 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
|
robert@464
|
710
|
robert@464
|
711 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
|
robert@464
|
712
|
robert@464
|
713 /* WORKS, jsut need to fix the glitch when jumps!
|
robert@464
|
714 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
|
robert@464
|
715 if(currentHop < intLoopPointMin -1 )
|
robert@464
|
716 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
|
robert@464
|
717 else if(currentHop > intLoopPointMax + 1)
|
robert@464
|
718 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
|
robert@464
|
719 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
|
robert@464
|
720 }
|
robert@464
|
721
|
robert@464
|
722 if(gIsLoading)
|
robert@464
|
723 gStatusLED.blink(25, 75); // Blink quickly until load finished
|
robert@464
|
724 else
|
robert@464
|
725 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
|
robert@464
|
726 gPRU->clearGPIOTestPin();
|
robert@464
|
727
|
robert@464
|
728 // static int counter = 32;
|
robert@464
|
729 // if(--counter == 0) {
|
robert@464
|
730 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
robert@464
|
731 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
|
robert@464
|
732 // if(i % 32 == 31)
|
robert@464
|
733 // dbox_printf("\n");
|
robert@464
|
734 // }
|
robert@464
|
735 // dbox_printf("\n\n");
|
robert@464
|
736 // counter = 32;
|
robert@464
|
737 // }
|
robert@464
|
738
|
robert@464
|
739 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
|
robert@464
|
740 }
|
robert@464
|
741
|
robert@464
|
742 // Clean up at the end of render
|
robert@464
|
743 void cleanup(BelaContext *context, void *userData)
|
robert@464
|
744 {
|
robert@464
|
745 free(gOscillatorBuffer1);
|
robert@464
|
746 free(gOscillatorBuffer2);
|
robert@464
|
747 free(gDynamicWavetable);
|
robert@464
|
748 }
|
robert@464
|
749
|
robert@464
|
750 // Interpolate one wavetable into another. The output size
|
robert@464
|
751 // does not include the guard point at the end which will be identical
|
robert@464
|
752 // to the first point
|
robert@464
|
753 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
robert@464
|
754 float *tableIn, float *tableOut,
|
robert@464
|
755 float *sineTable, float sineMix)
|
robert@464
|
756 {
|
robert@464
|
757 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
|
robert@464
|
758
|
robert@464
|
759 for(int k = 0; k < numSamplesOut; k++) {
|
robert@464
|
760 float fractionalIndex = (float) k * fractionalScaler;
|
robert@464
|
761 //int sB = (int)floorf(fractionalIndex);
|
robert@464
|
762 int sB = (int)floor(fractionalIndex);
|
robert@464
|
763 int sA = sB + 1;
|
robert@464
|
764 if(sA >= numSamplesIn)
|
robert@464
|
765 sA = 0;
|
robert@464
|
766 float fraction = fractionalIndex - sB;
|
robert@464
|
767 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
|
robert@464
|
768 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
|
robert@464
|
769 }
|
robert@464
|
770
|
robert@464
|
771 tableOut[numSamplesOut] = tableOut[0];
|
robert@464
|
772 }
|
robert@464
|
773
|
robert@464
|
774 // Create a hysteresis oscillator with a matrix input and output
|
robert@464
|
775 inline float hysteresis_oscillator(float input, float risingThreshold, float fallingThreshold, bool *rising)
|
robert@464
|
776 {
|
robert@464
|
777 float value;
|
robert@464
|
778
|
robert@464
|
779 if(*rising) {
|
robert@464
|
780 if(input > risingThreshold) {
|
robert@464
|
781 *rising = false;
|
robert@464
|
782 value = 0;
|
robert@464
|
783 }
|
robert@464
|
784 else
|
robert@464
|
785 value = 1.0;
|
robert@464
|
786 }
|
robert@464
|
787 else {
|
robert@464
|
788 if(input < fallingThreshold) {
|
robert@464
|
789 *rising = true;
|
robert@464
|
790 value = 1.0;
|
robert@464
|
791 }
|
robert@464
|
792 else
|
robert@464
|
793 value = 0;
|
robert@464
|
794 }
|
robert@464
|
795
|
robert@464
|
796 return value;
|
robert@464
|
797 }
|
robert@464
|
798
|
robert@464
|
799 #ifdef DBOX_CAPE_TEST
|
robert@464
|
800 // Test the functionality of the D-Box cape by checking each input and output
|
robert@464
|
801 // Loopback cable from ADC to DAC needed
|
robert@464
|
802 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
robert@464
|
803 uint16_t *matrixIn, uint16_t *matrixOut)
|
robert@464
|
804 {
|
robert@464
|
805 static float phase = 0.0;
|
robert@464
|
806 static int sampleCounter = 0;
|
robert@464
|
807 static int invertChannel = 0;
|
robert@464
|
808
|
robert@464
|
809 // Play a sine wave on the audio output
|
robert@464
|
810 for(int n = 0; n < numAudioFrames; n++) {
|
robert@464
|
811 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
|
robert@464
|
812 phase += 2.0 * M_PI * 440.0 / 44100.0;
|
robert@464
|
813 if(phase >= 2.0 * M_PI)
|
robert@464
|
814 phase -= 2.0 * M_PI;
|
robert@464
|
815 }
|
robert@464
|
816
|
robert@464
|
817 for(int n = 0; n < numMatrixFrames; n++) {
|
robert@464
|
818 // Change outputs every 512 samples
|
robert@464
|
819 if(sampleCounter < 512) {
|
robert@464
|
820 for(int k = 0; k < 8; k++) {
|
robert@464
|
821 if(k == invertChannel)
|
robert@464
|
822 matrixOut[n*8 + k] = 50000;
|
robert@464
|
823 else
|
robert@464
|
824 matrixOut[n*8 + k] = 0;
|
robert@464
|
825 }
|
robert@464
|
826 }
|
robert@464
|
827 else {
|
robert@464
|
828 for(int k = 0; k < 8; k++) {
|
robert@464
|
829 if(k == invertChannel)
|
robert@464
|
830 matrixOut[n*8 + k] = 0;
|
robert@464
|
831 else
|
robert@464
|
832 matrixOut[n*8 + k] = 50000;
|
robert@464
|
833 }
|
robert@464
|
834 }
|
robert@464
|
835
|
robert@464
|
836 // Read after 256 samples: input should be low
|
robert@464
|
837 if(sampleCounter == 256) {
|
robert@464
|
838 for(int k = 0; k < 8; k++) {
|
robert@464
|
839 if(k == invertChannel) {
|
robert@464
|
840 if(matrixIn[n*8 + k] < 50000) {
|
robert@464
|
841 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
robert@464
|
842 }
|
robert@464
|
843 }
|
robert@464
|
844 else {
|
robert@464
|
845 if(matrixIn[n*8 + k] > 2048) {
|
robert@464
|
846 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
|
robert@464
|
847 }
|
robert@464
|
848 }
|
robert@464
|
849 }
|
robert@464
|
850 }
|
robert@464
|
851 else if(sampleCounter == 768) {
|
robert@464
|
852 for(int k = 0; k < 8; k++) {
|
robert@464
|
853 if(k == invertChannel) {
|
robert@464
|
854 if(matrixIn[n*8 + k] > 2048) {
|
robert@464
|
855 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
robert@464
|
856 }
|
robert@464
|
857 }
|
robert@464
|
858 else {
|
robert@464
|
859 if(matrixIn[n*8 + k] < 50000) {
|
robert@464
|
860 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
|
robert@464
|
861 }
|
robert@464
|
862 }
|
robert@464
|
863 }
|
robert@464
|
864 }
|
robert@464
|
865
|
robert@464
|
866 if(++sampleCounter >= 1024) {
|
robert@464
|
867 sampleCounter = 0;
|
robert@464
|
868 invertChannel++;
|
robert@464
|
869 if(invertChannel >= 8)
|
robert@464
|
870 invertChannel = 0;
|
robert@464
|
871 }
|
robert@464
|
872 }
|
robert@464
|
873 }
|
robert@464
|
874 #endif
|
robert@464
|
875
|
robert@464
|
876
|