andrewm@0
|
1 /*
|
andrewm@0
|
2 * I2c_Codec.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Handle writing the registers to the TLV320AIC310x
|
andrewm@0
|
5 * series audio codecs, used on the BeagleBone Audio Cape.
|
andrewm@0
|
6 * This code is designed to bypass the ALSA driver and
|
andrewm@0
|
7 * configure the codec directly in a sensible way. It
|
andrewm@0
|
8 * is complemented by code running on the PRU which uses
|
andrewm@0
|
9 * the McASP serial port to transfer audio data.
|
andrewm@0
|
10 *
|
andrewm@0
|
11 * Created on: May 25, 2014
|
andrewm@0
|
12 * Author: Andrew McPherson
|
andrewm@0
|
13 */
|
andrewm@0
|
14
|
andrewm@0
|
15 #include "../include/I2c_Codec.h"
|
andrewm@0
|
16
|
andrewm@0
|
17 I2c_Codec::I2c_Codec()
|
andrewm@0
|
18 : running(false), dacVolumeHalfDbs(0), adcVolumeHalfDbs(0), hpVolumeHalfDbs(0)
|
andrewm@0
|
19 {}
|
andrewm@0
|
20
|
andrewm@0
|
21 // This method initialises the audio codec to its default state
|
andrewm@0
|
22 int I2c_Codec::initCodec()
|
andrewm@0
|
23 {
|
andrewm@0
|
24 // Write the reset register of the codec
|
andrewm@0
|
25 if(writeRegister(0x01, 0x80)) // Software reset register
|
andrewm@0
|
26 {
|
andrewm@0
|
27 cout << "Failed to reset codec\n";
|
andrewm@0
|
28 return 1;
|
andrewm@0
|
29 }
|
andrewm@0
|
30
|
andrewm@0
|
31 // Wait for codec to process the reset (for safety)
|
andrewm@0
|
32 usleep(5000);
|
andrewm@0
|
33
|
andrewm@0
|
34 return 0;
|
andrewm@0
|
35 }
|
andrewm@0
|
36
|
andrewm@0
|
37 // Tell the codec to start generating audio
|
andrewm@0
|
38 // See the TLV320AIC3106 datasheet for full details of the registers
|
andrewm@0
|
39 // The dual_rate flag, when true, runs the codec at 88.2kHz; otherwise
|
andrewm@0
|
40 // it runs at 44.1kHz
|
andrewm@0
|
41 int I2c_Codec::startAudio(int dual_rate)
|
andrewm@0
|
42 {
|
giuliomoro@142
|
43 // see datasehet for TLV320AIC3104 from page 44
|
andrewm@0
|
44 if(writeRegister(0x02, 0x00)) // Codec sample rate register: fs_ref / 1
|
andrewm@0
|
45 return 1;
|
giuliomoro@145
|
46 // The sampling frequency is given as f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
|
giuliomoro@145
|
47 // The master clock PLLCLK_IN is 12MHz
|
giuliomoro@145
|
48 // K can be varied in intervals of resolution of 0.0001 up to 63.9999
|
giuliomoro@145
|
49 // using P=8 and R=1 gives a resolution of 0.0732421875Hz ( 0.000166% at 44.1kHz)
|
giuliomoro@147
|
50 // for whatever reason, P=8 does not work (i.e.: setting the sampling rate works fine,
|
giuliomoro@147
|
51 // but when changing K by a small-ish value (0.0040), the clock does not seem to change).
|
giuliomoro@145
|
52 // to obtain Fs=44100 we need to have K=60.2112
|
giuliomoro@145
|
53
|
giuliomoro@147
|
54 if(setPllP(7))
|
giuliomoro@145
|
55 return 1;
|
giuliomoro@145
|
56 if(setPllR(1))
|
giuliomoro@145
|
57 return 1;
|
giuliomoro@145
|
58 if(setAudioSamplingRate(44100)) //this will automatically find and set K for the given P and R so that Fs=44100
|
giuliomoro@145
|
59 return 1;
|
giuliomoro@142
|
60 // if(writeRegister(0x03, 0x91)) // PLL register A: enable
|
giuliomoro@142
|
61 // return 1;
|
giuliomoro@132
|
62 // if(writeRegister(0x04, 0x1C)) // PLL register B
|
giuliomoro@132
|
63 // return 1;
|
giuliomoro@132
|
64 // if(writeRegister(0x05, 0x52)) // PLL register C
|
giuliomoro@132
|
65 // return 1;
|
giuliomoro@132
|
66 // if(writeRegister(0x06, 0x40)) // PLL register D
|
giuliomoro@132
|
67 // return 1;
|
giuliomoro@145
|
68 // if(writeRegister(0x0B, 0x01)) // Audio codec overflow flag register: PLL R = 1
|
giuliomoro@145
|
69 // return 1;
|
giuliomoro@145
|
70
|
giuliomoro@145
|
71 // if(setPllD(5264)) //7.5264 gives 44.1kHz nominal value with a 12MHz master clock
|
giuliomoro@145
|
72 // return 1;
|
giuliomoro@145
|
73 // if(setPllJ(7))
|
giuliomoro@145
|
74 // return 1;
|
andrewm@0
|
75 if(dual_rate) {
|
andrewm@0
|
76 if(writeRegister(0x07, 0xEA)) // Codec datapath register: 44.1kHz; dual rate; standard datapath
|
andrewm@0
|
77 return 1;
|
andrewm@0
|
78 }
|
andrewm@0
|
79 else {
|
andrewm@0
|
80 if(writeRegister(0x07, 0x8A)) // Codec datapath register: 44.1kHz; std rate; standard datapath
|
andrewm@0
|
81 return 1;
|
andrewm@0
|
82 }
|
andrewm@0
|
83 if(writeRegister(0x08, 0xC0)) // Audio serial control register A: BLCK, WCLK outputs
|
andrewm@0
|
84 return 1;
|
andrewm@0
|
85 if(writeRegister(0x09, 0x40)) // Audio serial control register B: DSP mode, word len 16 bits
|
andrewm@0
|
86 return 1;
|
andrewm@0
|
87 if(writeRegister(0x0A, 0x00)) // Audio serial control register C: 0 bit offset
|
andrewm@0
|
88 return 1;
|
andrewm@0
|
89 if(writeRegister(0x0C, 0x00)) // Digital filter register: disabled
|
andrewm@0
|
90 return 1;
|
andrewm@0
|
91 if(writeRegister(0x0D, 0x00)) // Headset / button press register A: disabled
|
andrewm@0
|
92 return 1;
|
andrewm@0
|
93 if(writeRegister(0x0E, 0x00)) // Headset / button press register B: disabled
|
andrewm@0
|
94 return 1;
|
andrewm@0
|
95 if(writeRegister(0x0F, 0x20)) // Left ADC PGA gain control: not muted; 0x20 = 16dB
|
andrewm@0
|
96 return 1;
|
andrewm@0
|
97 if(writeRegister(0x10, 0x20)) // Right ADC PGA gain control: not muted; 0x20 = 16dB
|
andrewm@0
|
98 return 1;
|
andrewm@0
|
99
|
andrewm@0
|
100 if(writeRegister(0x25, 0xC0)) // DAC power/driver register: DAC power on (left and right)
|
andrewm@0
|
101 return 1;
|
andrewm@0
|
102 if(writeRegister(0x26, 0x04)) // High power output driver register: Enable short circuit protection
|
andrewm@0
|
103 return 1;
|
andrewm@0
|
104 if(writeRegister(0x28, 0x02)) // High power output stage register: disable soft stepping
|
andrewm@0
|
105 return 1;
|
andrewm@0
|
106
|
andrewm@0
|
107 if(writeRegister(0x52, 0x80)) // DAC_L1 to LEFT_LOP volume control: routed, volume 0dB
|
andrewm@0
|
108 return 1;
|
andrewm@0
|
109 if(writeRegister(0x5C, 0x80)) // DAC_R1 to RIGHT_LOP volume control: routed, volume 0dB
|
andrewm@0
|
110 return 1;
|
andrewm@0
|
111
|
andrewm@0
|
112 if(writeHPVolumeRegisters()) // Send DAC to high-power outputs
|
andrewm@0
|
113 return 1;
|
andrewm@0
|
114
|
giuliomoro@142
|
115 if(writeRegister(0x66, 0x02)) // Clock generation control register: use MCLK, PLL N = 2
|
andrewm@0
|
116 return 1;
|
andrewm@0
|
117
|
andrewm@0
|
118 if(writeRegister(0x33, 0x0D)) // HPLOUT output level control: output level = 0dB, not muted, powered up
|
andrewm@0
|
119 return 1;
|
andrewm@0
|
120 if(writeRegister(0x41, 0x0D)) // HPROUT output level control: output level = 0dB, not muted, powered up
|
andrewm@0
|
121 return 1;
|
andrewm@0
|
122 if(writeRegister(0x56, 0x09)) // LEFT_LOP output level control: 0dB, not muted, powered up
|
andrewm@0
|
123 return 1;
|
andrewm@0
|
124 if(writeRegister(0x5D, 0x09)) // RIGHT_LOP output level control: 0dB, not muted, powered up
|
andrewm@0
|
125 return 1;
|
andrewm@0
|
126
|
andrewm@0
|
127 if(writeDACVolumeRegisters(false)) // Unmute and set volume
|
andrewm@0
|
128 return 1;
|
andrewm@0
|
129
|
andrewm@0
|
130 if(writeRegister(0x65, 0x00)) // GPIO control register B: disabled; codec uses PLLDIV_OUT
|
andrewm@0
|
131 return 1;
|
andrewm@0
|
132
|
andrewm@0
|
133 if(writeADCVolumeRegisters(false)) // Unmute and set ADC volume
|
andrewm@0
|
134 return 1;
|
andrewm@0
|
135
|
andrewm@0
|
136 running = true;
|
andrewm@0
|
137 return 0;
|
andrewm@0
|
138 }
|
andrewm@0
|
139
|
giuliomoro@97
|
140 //set the numerator multiplier for the PLL
|
giuliomoro@97
|
141 int I2c_Codec::setPllK(float k){
|
giuliomoro@97
|
142 short unsigned int j=(int)k;
|
giuliomoro@132
|
143 unsigned int d=(int)(0.5+(k-j)*10000); //fractional part, between 0 and 9999
|
giuliomoro@97
|
144 if(setPllJ(j)>0)
|
giuliomoro@97
|
145 return 1;
|
giuliomoro@97
|
146 if(setPllD(d)>0)
|
giuliomoro@97
|
147 return 2;
|
giuliomoro@97
|
148 return 0;
|
giuliomoro@97
|
149 }
|
giuliomoro@97
|
150
|
giuliomoro@97
|
151
|
giuliomoro@97
|
152 //set integer part of the numerator mutliplier of the PLL
|
giuliomoro@97
|
153 int I2c_Codec::setPllJ(short unsigned int j){
|
giuliomoro@97
|
154 if(j>=64 || j<1){
|
giuliomoro@97
|
155 return 1;
|
giuliomoro@97
|
156 }
|
giuliomoro@97
|
157 if(writeRegister(0x04, j<<2)){ // PLL register B: j<<2
|
giuliomoro@97
|
158 printf("I2C error while writing PLL j: %d", j);
|
giuliomoro@97
|
159 return 1;
|
giuliomoro@97
|
160 }
|
giuliomoro@132
|
161 pllJ=j;
|
giuliomoro@97
|
162 return 0;
|
giuliomoro@97
|
163 }
|
giuliomoro@97
|
164
|
giuliomoro@97
|
165 //set fractional part(between 0 and 9999) of the numerator mutliplier of the PLL
|
giuliomoro@97
|
166 int I2c_Codec::setPllD(unsigned int d){
|
giuliomoro@97
|
167 if(d<0 || d>9999)
|
giuliomoro@97
|
168 return 1;
|
giuliomoro@97
|
169 if(writeRegister(0x05, (d>>6)&255)){ // PLL register C: part 1 : 8 most significant bytes of a 14bit integer
|
giuliomoro@97
|
170 printf("I2C error while writing PLL d part 1 : %d", d);
|
giuliomoro@97
|
171 return 1;
|
giuliomoro@97
|
172 }
|
giuliomoro@97
|
173 if(writeRegister(0x06, (d<<2)&255)){ // PLL register D: D=5264, part 2
|
giuliomoro@97
|
174 printf("I2C error while writing PLL d part 2 : %d", d);
|
giuliomoro@97
|
175 return 1;
|
giuliomoro@97
|
176 }
|
giuliomoro@132
|
177 pllD=d;
|
giuliomoro@97
|
178 return 0;
|
giuliomoro@97
|
179 }
|
giuliomoro@132
|
180
|
giuliomoro@142
|
181 //set integer part of the numerator mutliplier of the PLL
|
giuliomoro@142
|
182 //
|
giuliomoro@142
|
183 int I2c_Codec::setPllP(short unsigned int p){
|
giuliomoro@142
|
184 if(p > 8 || p < 1){
|
giuliomoro@142
|
185 return 1;
|
giuliomoro@142
|
186 }
|
giuliomoro@142
|
187 short unsigned int bits = 0;
|
giuliomoro@142
|
188 bits |= 1 << 7; //this means PLL enabled
|
giuliomoro@142
|
189 bits |= 0b0010 << 3; // this is the reset value for Q, which is anyhow unused when PLL is active
|
giuliomoro@142
|
190 if (p == 8) // 8 is a special value: PLL P Value 000: P = 8
|
giuliomoro@142
|
191 bits = bits | 0;
|
giuliomoro@142
|
192 else
|
giuliomoro@142
|
193 bits = bits | p; // other values are written with their binary representation.
|
giuliomoro@142
|
194 if(writeRegister(0x03, bits)){ // PLL register B: j<<2
|
giuliomoro@142
|
195 printf("I2C error while writing PLL p: %d", p);
|
giuliomoro@142
|
196 return 1;
|
giuliomoro@142
|
197 }
|
giuliomoro@142
|
198 pllP = p;
|
giuliomoro@142
|
199 return 0;
|
giuliomoro@142
|
200 }
|
giuliomoro@142
|
201 int I2c_Codec::setPllR(unsigned int r){
|
giuliomoro@142
|
202 if(r > 16){ //value out of range
|
giuliomoro@142
|
203 return 1;
|
giuliomoro@142
|
204 }
|
giuliomoro@142
|
205 unsigned int bits = 0;
|
giuliomoro@142
|
206 //bits D7-D4 are for ADC and DAC overflow flags and are read only
|
giuliomoro@142
|
207 if(r == 16) // 16 is a special value: PLL R Value 0000: R = 16
|
giuliomoro@142
|
208 bits |= 0;
|
giuliomoro@142
|
209 else
|
giuliomoro@142
|
210 bits |= r; // other values are written with their binary representation.
|
giuliomoro@142
|
211 if(writeRegister(0x0B, bits)){ // PLL register B: j<<2
|
giuliomoro@142
|
212 printf("I2C error while writing PLL r: %d", r);
|
giuliomoro@142
|
213 return 1;
|
giuliomoro@142
|
214 }
|
giuliomoro@142
|
215 pllR = r;
|
giuliomoro@142
|
216 return 0;
|
giuliomoro@142
|
217 }
|
giuliomoro@132
|
218 int I2c_Codec::setAudioSamplingRate(float newSamplingRate){
|
giuliomoro@132
|
219 long int PLLCLK_IN=12000000;
|
giuliomoro@132
|
220 // f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
|
giuliomoro@132
|
221 float k = ((double)(newSamplingRate * pllP * 2048.0f/(float)pllR)) / PLLCLK_IN ;
|
giuliomoro@147
|
222 int ret = setPllK(k);
|
giuliomoro@147
|
223 // printf("P: %d, R: %d, J: %d, D: %d\n", pllP, pllR, pllJ, pllD);
|
giuliomoro@147
|
224 return ret;
|
giuliomoro@132
|
225 }
|
giuliomoro@132
|
226
|
giuliomoro@132
|
227 short unsigned int I2c_Codec::getPllJ(){
|
giuliomoro@132
|
228 return pllJ;
|
giuliomoro@132
|
229 }
|
giuliomoro@132
|
230 unsigned int I2c_Codec::getPllD(){
|
giuliomoro@132
|
231 return pllD;
|
giuliomoro@132
|
232 }
|
giuliomoro@142
|
233 unsigned int I2c_Codec::getPllR(){
|
giuliomoro@142
|
234 return pllR;
|
giuliomoro@142
|
235 }
|
giuliomoro@142
|
236 unsigned int I2c_Codec::getPllP(){
|
giuliomoro@142
|
237 return pllP;
|
giuliomoro@142
|
238 }
|
giuliomoro@132
|
239 float I2c_Codec::getPllK(){
|
giuliomoro@132
|
240 float j=getPllJ();
|
giuliomoro@132
|
241 float d=getPllD();
|
giuliomoro@132
|
242 float k=j+d/10000.0f;
|
giuliomoro@132
|
243 return k;
|
giuliomoro@132
|
244 }
|
giuliomoro@132
|
245
|
giuliomoro@132
|
246 float I2c_Codec::getAudioSamplingRate(){
|
giuliomoro@132
|
247 int pllP=1; //TODO: create get/set for pllP and pllR
|
giuliomoro@132
|
248 int pllR=1;
|
giuliomoro@132
|
249 long int PLLCLK_IN=12000000;
|
giuliomoro@132
|
250 // f_{S(ref)} = (PLLCLK_IN × K × R)/(2048 × P)
|
giuliomoro@132
|
251 float fs = (PLLCLK_IN/2048.0f) * getPllK()*pllR/(float)pllP;
|
giuliomoro@132
|
252 return fs;
|
giuliomoro@132
|
253 }
|
andrewm@0
|
254 // Set the volume of the DAC output
|
andrewm@0
|
255 int I2c_Codec::setDACVolume(int halfDbSteps)
|
andrewm@0
|
256 {
|
andrewm@0
|
257 dacVolumeHalfDbs = halfDbSteps;
|
andrewm@0
|
258 if(running)
|
andrewm@0
|
259 return writeDACVolumeRegisters(false);
|
andrewm@0
|
260
|
andrewm@0
|
261 return 0;
|
andrewm@0
|
262 }
|
andrewm@0
|
263
|
andrewm@0
|
264 // Set the volume of the DAC output
|
andrewm@0
|
265 int I2c_Codec::setADCVolume(int halfDbSteps)
|
andrewm@0
|
266 {
|
andrewm@0
|
267 adcVolumeHalfDbs = halfDbSteps;
|
andrewm@0
|
268 if(running)
|
andrewm@0
|
269 return writeADCVolumeRegisters(false);
|
andrewm@0
|
270
|
andrewm@0
|
271 return 0;
|
andrewm@0
|
272 }
|
andrewm@0
|
273
|
andrewm@0
|
274 // Update the DAC volume control registers
|
andrewm@0
|
275 int I2c_Codec::writeDACVolumeRegisters(bool mute)
|
andrewm@0
|
276 {
|
andrewm@0
|
277 int volumeBits = 0;
|
andrewm@0
|
278
|
andrewm@0
|
279 if(dacVolumeHalfDbs < 0) { // Volume is specified in half-dBs with 0 as full scale
|
andrewm@0
|
280 volumeBits = -dacVolumeHalfDbs;
|
andrewm@0
|
281 if(volumeBits > 127)
|
andrewm@0
|
282 volumeBits = 127;
|
andrewm@0
|
283 }
|
andrewm@0
|
284
|
andrewm@0
|
285 if(mute) {
|
andrewm@0
|
286 if(writeRegister(0x2B, volumeBits | 0x80)) // Left DAC volume control: muted
|
andrewm@0
|
287 return 1;
|
andrewm@0
|
288 if(writeRegister(0x2C, volumeBits | 0x80)) // Right DAC volume control: muted
|
andrewm@0
|
289 return 1;
|
andrewm@0
|
290 }
|
andrewm@0
|
291 else {
|
andrewm@0
|
292 if(writeRegister(0x2B, volumeBits)) // Left DAC volume control: not muted
|
andrewm@0
|
293 return 1;
|
andrewm@0
|
294 if(writeRegister(0x2C, volumeBits)) // Right DAC volume control: not muted
|
andrewm@0
|
295 return 1;
|
andrewm@0
|
296 }
|
andrewm@0
|
297
|
andrewm@0
|
298 return 0;
|
andrewm@0
|
299 }
|
andrewm@0
|
300
|
andrewm@0
|
301 // Update the ADC volume control registers
|
andrewm@0
|
302 int I2c_Codec::writeADCVolumeRegisters(bool mute)
|
andrewm@0
|
303 {
|
andrewm@0
|
304 int volumeBits = 0;
|
andrewm@0
|
305
|
andrewm@0
|
306 // Volume is specified in half-dBs with 0 as full scale
|
andrewm@0
|
307 // The codec uses 1.5dB steps so we divide this number by 3
|
andrewm@0
|
308 if(adcVolumeHalfDbs < 0) {
|
andrewm@0
|
309 volumeBits = -adcVolumeHalfDbs / 3;
|
andrewm@0
|
310 if(volumeBits > 8)
|
andrewm@0
|
311 volumeBits = 8;
|
andrewm@0
|
312 }
|
andrewm@0
|
313
|
andrewm@0
|
314 if(mute) {
|
andrewm@0
|
315 if(writeRegister(0x13, 0x00)) // Line1L to Left ADC control register: power down
|
andrewm@0
|
316 return 1;
|
andrewm@0
|
317 if(writeRegister(0x16, 0x00)) // Line1R to Right ADC control register: power down
|
andrewm@0
|
318 return 1;
|
andrewm@0
|
319 }
|
andrewm@0
|
320 else {
|
andrewm@0
|
321 if(writeRegister(0x13, 0x7C)) // Line1L disabled; left ADC powered up with soft step
|
andrewm@0
|
322 return 1;
|
andrewm@0
|
323 if(writeRegister(0x16, 0x7C)) // Line1R disabled; right ADC powered up with soft step
|
andrewm@0
|
324 return 1;
|
andrewm@0
|
325 if(writeRegister(0x11, (volumeBits << 4) | 0x0F)) // Line2L connected to left ADC
|
andrewm@0
|
326 return 1;
|
andrewm@0
|
327 if(writeRegister(0x12, volumeBits | 0xF0)) // Line2R connected to right ADC
|
andrewm@0
|
328 return 1;
|
andrewm@0
|
329 }
|
andrewm@0
|
330
|
andrewm@0
|
331 return 0;
|
andrewm@0
|
332 }
|
andrewm@0
|
333
|
andrewm@0
|
334 // Set the volume of the headphone output
|
andrewm@0
|
335 int I2c_Codec::setHPVolume(int halfDbSteps)
|
andrewm@0
|
336 {
|
andrewm@0
|
337 hpVolumeHalfDbs = halfDbSteps;
|
andrewm@0
|
338 if(running)
|
andrewm@0
|
339 return writeHPVolumeRegisters();
|
andrewm@0
|
340
|
andrewm@0
|
341 return 0;
|
andrewm@0
|
342 }
|
andrewm@0
|
343
|
andrewm@0
|
344
|
andrewm@0
|
345 // Update the headphone volume control registers
|
andrewm@0
|
346 int I2c_Codec::writeHPVolumeRegisters()
|
andrewm@0
|
347 {
|
andrewm@0
|
348 int volumeBits = 0;
|
andrewm@0
|
349
|
andrewm@0
|
350 if(hpVolumeHalfDbs < 0) { // Volume is specified in half-dBs with 0 as full scale
|
andrewm@0
|
351 volumeBits = -hpVolumeHalfDbs;
|
andrewm@0
|
352 if(volumeBits > 127)
|
andrewm@0
|
353 volumeBits = 127;
|
andrewm@0
|
354 }
|
andrewm@0
|
355
|
andrewm@0
|
356 if(writeRegister(0x2F, volumeBits | 0x80)) // DAC_L1 to HPLOUT register: route to HPLOUT, volume 0dB
|
andrewm@0
|
357 return 1;
|
andrewm@0
|
358 if(writeRegister(0x40, volumeBits | 0x80)) // DAC_R1 to HPROUT register: route to HPROUT, volume 0dB
|
andrewm@0
|
359 return 1;
|
andrewm@0
|
360
|
andrewm@0
|
361 return 0;
|
andrewm@0
|
362 }
|
andrewm@0
|
363
|
andrewm@0
|
364 // This tells the codec to stop generating audio and mute the outputs
|
andrewm@0
|
365 int I2c_Codec::stopAudio()
|
andrewm@0
|
366 {
|
andrewm@0
|
367 if(writeDACVolumeRegisters(true)) // Mute the DACs
|
andrewm@0
|
368 return 1;
|
andrewm@0
|
369 if(writeADCVolumeRegisters(true)) // Mute the ADCs
|
andrewm@0
|
370 return 1;
|
andrewm@0
|
371
|
andrewm@0
|
372 usleep(10000);
|
andrewm@0
|
373
|
andrewm@0
|
374 if(writeRegister(0x33, 0x0C)) // HPLOUT output level register: muted
|
andrewm@0
|
375 return 1;
|
andrewm@0
|
376 if(writeRegister(0x41, 0x0C)) // HPROUT output level register: muted
|
andrewm@0
|
377 return 1;
|
andrewm@0
|
378 if(writeRegister(0x56, 0x08)) // LEFT_LOP output level control: muted
|
andrewm@0
|
379 return 1;
|
andrewm@0
|
380 if(writeRegister(0x5D, 0x08)) // RIGHT_LOP output level control: muted
|
andrewm@0
|
381 return 1;
|
andrewm@0
|
382 if(writeRegister(0x25, 0x00)) // DAC power/driver register: power off
|
andrewm@0
|
383 return 1;
|
andrewm@0
|
384 if(writeRegister(0x03, 0x11)) // PLL register A: disable
|
andrewm@0
|
385 return 1;
|
andrewm@0
|
386 if(writeRegister(0x01, 0x80)) // Reset codec to defaults
|
andrewm@0
|
387 return 1;
|
andrewm@0
|
388
|
andrewm@0
|
389 running = false;
|
andrewm@0
|
390 return 0;
|
andrewm@0
|
391 }
|
andrewm@0
|
392
|
andrewm@0
|
393 // Write a specific register on the codec
|
andrewm@0
|
394 int I2c_Codec::writeRegister(unsigned int reg, unsigned int value)
|
andrewm@0
|
395 {
|
andrewm@0
|
396 char buf[2] = { reg & 0xFF, value & 0xFF };
|
andrewm@0
|
397
|
andrewm@0
|
398 if(write(i2C_file, buf, 2) != 2)
|
andrewm@0
|
399 {
|
andrewm@0
|
400 cout << "Failed to write register " << reg << " on codec\n";
|
andrewm@0
|
401 return 1;
|
andrewm@0
|
402 }
|
andrewm@0
|
403
|
andrewm@0
|
404 return 0;
|
andrewm@0
|
405 }
|
andrewm@0
|
406
|
andrewm@0
|
407
|
andrewm@0
|
408 int I2c_Codec::readI2C()
|
andrewm@0
|
409 {
|
andrewm@0
|
410 // Nothing to do here, we only write the registers
|
andrewm@0
|
411 return 0;
|
andrewm@0
|
412 }
|
andrewm@0
|
413
|
andrewm@0
|
414
|
andrewm@0
|
415 I2c_Codec::~I2c_Codec()
|
andrewm@0
|
416 {
|
andrewm@0
|
417 if(running)
|
andrewm@0
|
418 stopAudio();
|
andrewm@0
|
419 }
|
andrewm@0
|
420
|