robert@285
|
1 /*
|
robert@285
|
2 ____ _____ _ _
|
robert@285
|
3 | __ )| ____| | / \
|
robert@285
|
4 | _ \| _| | | / _ \
|
robert@285
|
5 | |_) | |___| |___ / ___ \
|
robert@285
|
6 |____/|_____|_____/_/ \_\.io
|
robert@285
|
7
|
robert@285
|
8 */
|
robert@285
|
9
|
victor@3
|
10 /*
|
victor@3
|
11 * render.cpp
|
victor@3
|
12 *
|
victor@3
|
13 * Created on: Oct 24, 2014
|
victor@3
|
14 * Author: Andrew McPherson and Victor Zappi
|
victor@3
|
15 */
|
victor@3
|
16
|
robert@285
|
17 /**
|
robert@285
|
18 \example 4_filter_IIR
|
robert@285
|
19
|
robert@285
|
20 Infinite Impulse Response Filter
|
robert@285
|
21 ------------------------------
|
robert@285
|
22
|
robert@285
|
23 This is an example of a infinite impulse response filter implementation.
|
robert@285
|
24
|
robert@285
|
25 */
|
robert@285
|
26
|
victor@3
|
27
|
andrewm@56
|
28 #include <BeagleRT.h> // to schedule lower prio parallel process
|
victor@3
|
29 #include <rtdk.h>
|
victor@3
|
30 #include <cmath>
|
victor@3
|
31 #include <stdio.h>
|
victor@3
|
32 #include "SampleData.h"
|
victor@3
|
33
|
victor@3
|
34 SampleData gSampleData; // User defined structure to get complex data from main
|
victor@3
|
35 int gReadPtr; // Position of last read sample from file
|
victor@3
|
36
|
victor@3
|
37 // filter vars
|
victor@3
|
38 float gLastX[2];
|
victor@3
|
39 float gLastY[2];
|
victor@3
|
40 double lb0, lb1, lb2, la1, la2 = 0.0;
|
victor@3
|
41
|
victor@3
|
42 // communication vars between the 2 auxiliary tasks
|
victor@3
|
43 int gChangeCoeff = 0;
|
victor@3
|
44 int gFreqDelta = 0;
|
victor@3
|
45
|
victor@3
|
46 void initialise_filter(float freq);
|
victor@3
|
47
|
victor@3
|
48 void calculate_coeff(float cutFreq);
|
victor@3
|
49
|
victor@3
|
50 bool initialise_aux_tasks();
|
victor@3
|
51
|
victor@3
|
52 // Task for handling the update of the frequencies using the matrix
|
victor@3
|
53 AuxiliaryTask gChangeCoeffTask;
|
victor@3
|
54
|
victor@3
|
55 void check_coeff();
|
victor@3
|
56
|
victor@3
|
57 // Task for handling the update of the frequencies using the matrix
|
victor@3
|
58 AuxiliaryTask gInputTask;
|
victor@3
|
59
|
victor@3
|
60 void read_input();
|
victor@3
|
61
|
victor@3
|
62
|
victor@3
|
63 extern float gCutFreq;
|
victor@3
|
64
|
victor@3
|
65
|
andrewm@56
|
66 // setup() is called once before the audio rendering starts.
|
victor@3
|
67 // Use it to perform any initialisation and allocation which is dependent
|
victor@3
|
68 // on the period size or sample rate.
|
victor@3
|
69 //
|
victor@3
|
70 // userData holds an opaque pointer to a data structure that was passed
|
victor@3
|
71 // in from the call to initAudio().
|
victor@3
|
72 //
|
victor@3
|
73 // Return true on success; returning false halts the program.
|
victor@3
|
74
|
andrewm@56
|
75 bool setup(BeagleRTContext *context, void *userData)
|
victor@3
|
76 {
|
victor@3
|
77
|
victor@3
|
78 // Retrieve a parameter passed in from the initAudio() call
|
victor@3
|
79 gSampleData = *(SampleData *)userData;
|
victor@3
|
80
|
victor@3
|
81 gReadPtr = -1;
|
victor@3
|
82
|
victor@3
|
83 initialise_filter(200);
|
victor@3
|
84
|
victor@3
|
85 // Initialise auxiliary tasks
|
victor@3
|
86 if(!initialise_aux_tasks())
|
victor@3
|
87 return false;
|
victor@3
|
88
|
victor@3
|
89 return true;
|
victor@3
|
90 }
|
victor@3
|
91
|
victor@3
|
92 // render() is called regularly at the highest priority by the audio engine.
|
victor@3
|
93 // Input and output are given from the audio hardware and the other
|
victor@3
|
94 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
victor@3
|
95 // will be 0.
|
victor@3
|
96
|
andrewm@52
|
97 void render(BeagleRTContext *context, void *userData)
|
victor@3
|
98 {
|
andrewm@52
|
99 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
victor@3
|
100 float sample = 0;
|
victor@3
|
101 float out = 0;
|
victor@3
|
102
|
victor@3
|
103 // If triggered...
|
victor@3
|
104 if(gReadPtr != -1)
|
victor@3
|
105 sample += gSampleData.samples[gReadPtr++]; // ...read each sample...
|
victor@3
|
106
|
victor@3
|
107 if(gReadPtr >= gSampleData.sampleLen)
|
victor@3
|
108 gReadPtr = -1;
|
victor@3
|
109
|
victor@3
|
110 out = lb0*sample+lb1*gLastX[0]+lb2*gLastX[1]-la1*gLastY[0]-la2*gLastY[1];
|
victor@3
|
111
|
victor@3
|
112 gLastX[1] = gLastX[0];
|
victor@3
|
113 gLastX[0] = out;
|
victor@3
|
114 gLastY[1] = gLastY[0];
|
victor@3
|
115 gLastY[0] = out;
|
victor@3
|
116
|
andrewm@52
|
117 for(unsigned int channel = 0; channel < context->audioChannels; channel++)
|
andrewm@52
|
118 context->audioOut[n * context->audioChannels + channel] = out; // ...and put it in both left and right channel
|
victor@3
|
119
|
victor@3
|
120 }
|
victor@3
|
121
|
victor@3
|
122 // Request that the lower-priority tasks run at next opportunity
|
andrewm@52
|
123 BeagleRT_scheduleAuxiliaryTask(gChangeCoeffTask);
|
andrewm@52
|
124 BeagleRT_scheduleAuxiliaryTask(gInputTask);
|
victor@3
|
125 }
|
victor@3
|
126
|
victor@3
|
127 // First calculation of coefficients
|
victor@3
|
128
|
victor@3
|
129 void initialise_filter(float freq)
|
victor@3
|
130 {
|
victor@3
|
131 calculate_coeff(freq);
|
victor@3
|
132 }
|
victor@3
|
133
|
victor@3
|
134
|
victor@3
|
135 // Calculate the filter coefficients
|
victor@3
|
136 // second order low pass butterworth filter
|
victor@3
|
137
|
victor@3
|
138 void calculate_coeff(float cutFreq)
|
victor@3
|
139 {
|
victor@3
|
140 // Initialise any previous state (clearing buffers etc.)
|
victor@3
|
141 // to prepare for calls to render()
|
victor@3
|
142 float sampleRate = 44100;
|
victor@3
|
143 double f = 2*M_PI*cutFreq/sampleRate;
|
victor@3
|
144 double denom = 4+2*sqrt(2)*f+f*f;
|
victor@3
|
145 lb0 = f*f/denom;
|
victor@3
|
146 lb1 = 2*lb0;
|
victor@3
|
147 lb2 = lb0;
|
victor@3
|
148 la1 = (2*f*f-8)/denom;
|
victor@3
|
149 la2 = (f*f+4-2*sqrt(2)*f)/denom;
|
victor@3
|
150 gLastX[0] = gLastX [1] = 0;
|
victor@3
|
151 gLastY[0] = gLastY[1] = 0;
|
victor@3
|
152
|
victor@3
|
153 }
|
victor@3
|
154
|
victor@3
|
155
|
victor@3
|
156 // Initialise the auxiliary tasks
|
victor@3
|
157 // and print info
|
victor@3
|
158
|
victor@3
|
159 bool initialise_aux_tasks()
|
victor@3
|
160 {
|
andrewm@52
|
161 if((gChangeCoeffTask = BeagleRT_createAuxiliaryTask(&check_coeff, 90, "beaglert-check-coeff")) == 0)
|
victor@3
|
162 return false;
|
victor@3
|
163
|
andrewm@52
|
164 if((gInputTask = BeagleRT_createAuxiliaryTask(&read_input, 50, "beaglert-read-input")) == 0)
|
victor@3
|
165 return false;
|
victor@3
|
166
|
victor@3
|
167 rt_printf("Press 'a' to trigger sample, 's' to stop\n");
|
victor@3
|
168 rt_printf("Press 'z' to low down cut-off freq of 100 Hz, 'x' to raise it up\n");
|
victor@3
|
169 rt_printf("Press 'q' to quit\n");
|
victor@3
|
170
|
victor@3
|
171 return true;
|
victor@3
|
172 }
|
victor@3
|
173
|
victor@3
|
174 // Check if cut-off freq has been changed
|
victor@3
|
175 // and new coefficients are needed
|
victor@3
|
176
|
victor@3
|
177 void check_coeff()
|
victor@3
|
178 {
|
victor@3
|
179 if(gChangeCoeff == 1)
|
victor@3
|
180 {
|
victor@3
|
181 gCutFreq += gFreqDelta;
|
victor@3
|
182 gCutFreq = gCutFreq < 0 ? 0 : gCutFreq;
|
victor@3
|
183 gCutFreq = gCutFreq > 22050 ? 22050 : gCutFreq;
|
victor@3
|
184
|
victor@3
|
185 rt_printf("Cut-off frequency: %f\n", gCutFreq);
|
victor@3
|
186
|
victor@3
|
187 calculate_coeff(gCutFreq);
|
victor@3
|
188 gChangeCoeff = 0;
|
victor@3
|
189 }
|
victor@3
|
190 }
|
victor@3
|
191
|
victor@3
|
192 // This is a lower-priority call to periodically read keyboard input
|
victor@3
|
193 // and trigger samples. By placing it at a lower priority,
|
victor@3
|
194 // it has minimal effect on the audio performance but it will take longer to
|
victor@3
|
195 // complete if the system is under heavy audio load.
|
victor@3
|
196
|
victor@3
|
197 void read_input()
|
victor@3
|
198 {
|
victor@3
|
199 // This is not a real-time task!
|
victor@3
|
200 // Cos getchar is a system call, not handled by Xenomai.
|
victor@3
|
201 // This task will be automatically down graded.
|
victor@3
|
202
|
victor@3
|
203 char keyStroke = '.';
|
victor@3
|
204
|
victor@3
|
205 keyStroke = getchar();
|
victor@3
|
206 while(getchar()!='\n'); // to read the first stroke
|
victor@3
|
207
|
victor@3
|
208 switch (keyStroke)
|
victor@3
|
209 {
|
victor@3
|
210 case 'a':
|
victor@3
|
211 gReadPtr = 0;
|
victor@3
|
212 break;
|
victor@3
|
213 case 's':
|
victor@3
|
214 gReadPtr = -1;
|
victor@3
|
215 break;
|
victor@3
|
216 case 'z':
|
victor@3
|
217 gChangeCoeff = 1;
|
victor@3
|
218 gFreqDelta = -100;
|
victor@3
|
219 break;
|
victor@3
|
220 case 'x':
|
victor@3
|
221 gChangeCoeff = 1;
|
victor@3
|
222 gFreqDelta = 100;
|
victor@3
|
223 break;
|
victor@3
|
224 case 'q':
|
victor@3
|
225 gShouldStop = true;
|
victor@3
|
226 break;
|
victor@3
|
227 default:
|
victor@3
|
228 break;
|
victor@3
|
229 }
|
victor@3
|
230 }
|
victor@3
|
231
|
victor@3
|
232
|
victor@3
|
233
|
andrewm@56
|
234 // cleanup() is called once at the end, after the audio has stopped.
|
andrewm@56
|
235 // Release any resources that were allocated in setup().
|
victor@3
|
236
|
andrewm@56
|
237 void cleanup(BeagleRTContext *context, void *userData)
|
victor@3
|
238 {
|
victor@3
|
239 delete[] gSampleData.samples;
|
victor@3
|
240 }
|