robert@372
|
1 /*
|
robert@372
|
2 ____ _____ _ _
|
robert@372
|
3 | __ )| ____| | / \
|
robert@372
|
4 | _ \| _| | | / _ \
|
robert@372
|
5 | |_) | |___| |___ / ___ \
|
robert@372
|
6 |____/|_____|_____/_/ \_\.io
|
robert@372
|
7
|
robert@372
|
8 */
|
robert@372
|
9
|
victor@3
|
10 /*
|
victor@3
|
11 * render.cpp
|
victor@3
|
12 *
|
victor@3
|
13 * Created on: Oct 24, 2014
|
victor@3
|
14 * Author: Andrew McPherson and Victor Zappi
|
victor@3
|
15 */
|
victor@3
|
16
|
robert@372
|
17 /**
|
robert@372
|
18 \example 4_filter_IIR
|
robert@372
|
19
|
robert@372
|
20 Infinite Impulse Response Filter
|
robert@372
|
21 ------------------------------
|
robert@372
|
22
|
robert@372
|
23 This is an example of a infinite impulse response filter implementation.
|
robert@372
|
24 */
|
victor@3
|
25
|
giuliomoro@301
|
26 #include <Bela.h> // to schedule lower prio parallel process
|
victor@3
|
27 #include <rtdk.h>
|
victor@3
|
28 #include <cmath>
|
victor@3
|
29 #include <stdio.h>
|
victor@3
|
30 #include "SampleData.h"
|
victor@3
|
31
|
victor@3
|
32 SampleData gSampleData; // User defined structure to get complex data from main
|
victor@3
|
33 int gReadPtr; // Position of last read sample from file
|
victor@3
|
34
|
victor@3
|
35 // filter vars
|
victor@3
|
36 float gLastX[2];
|
victor@3
|
37 float gLastY[2];
|
victor@3
|
38 double lb0, lb1, lb2, la1, la2 = 0.0;
|
victor@3
|
39
|
victor@3
|
40 // communication vars between the 2 auxiliary tasks
|
victor@3
|
41 int gChangeCoeff = 0;
|
victor@3
|
42 int gFreqDelta = 0;
|
victor@3
|
43
|
victor@3
|
44 void initialise_filter(float freq);
|
victor@3
|
45
|
victor@3
|
46 void calculate_coeff(float cutFreq);
|
victor@3
|
47
|
victor@3
|
48 bool initialise_aux_tasks();
|
victor@3
|
49
|
victor@3
|
50 // Task for handling the update of the frequencies using the matrix
|
victor@3
|
51 AuxiliaryTask gChangeCoeffTask;
|
victor@3
|
52
|
victor@3
|
53 void check_coeff();
|
victor@3
|
54
|
victor@3
|
55 // Task for handling the update of the frequencies using the matrix
|
victor@3
|
56 AuxiliaryTask gInputTask;
|
victor@3
|
57
|
victor@3
|
58 void read_input();
|
victor@3
|
59
|
victor@3
|
60
|
victor@3
|
61 extern float gCutFreq;
|
victor@3
|
62
|
victor@3
|
63
|
andrewm@56
|
64 // setup() is called once before the audio rendering starts.
|
victor@3
|
65 // Use it to perform any initialisation and allocation which is dependent
|
victor@3
|
66 // on the period size or sample rate.
|
victor@3
|
67 //
|
victor@3
|
68 // userData holds an opaque pointer to a data structure that was passed
|
victor@3
|
69 // in from the call to initAudio().
|
victor@3
|
70 //
|
victor@3
|
71 // Return true on success; returning false halts the program.
|
victor@3
|
72
|
giuliomoro@301
|
73 bool setup(BelaContext *context, void *userData)
|
victor@3
|
74 {
|
victor@3
|
75
|
victor@3
|
76 // Retrieve a parameter passed in from the initAudio() call
|
victor@3
|
77 gSampleData = *(SampleData *)userData;
|
victor@3
|
78
|
victor@3
|
79 gReadPtr = -1;
|
victor@3
|
80
|
victor@3
|
81 initialise_filter(200);
|
victor@3
|
82
|
victor@3
|
83 // Initialise auxiliary tasks
|
victor@3
|
84 if(!initialise_aux_tasks())
|
victor@3
|
85 return false;
|
victor@3
|
86
|
victor@3
|
87 return true;
|
victor@3
|
88 }
|
victor@3
|
89
|
victor@3
|
90 // render() is called regularly at the highest priority by the audio engine.
|
victor@3
|
91 // Input and output are given from the audio hardware and the other
|
victor@3
|
92 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
victor@3
|
93 // will be 0.
|
victor@3
|
94
|
giuliomoro@301
|
95 void render(BelaContext *context, void *userData)
|
victor@3
|
96 {
|
andrewm@52
|
97 for(unsigned int n = 0; n < context->audioFrames; n++) {
|
victor@3
|
98 float sample = 0;
|
victor@3
|
99 float out = 0;
|
victor@3
|
100
|
victor@3
|
101 // If triggered...
|
victor@3
|
102 if(gReadPtr != -1)
|
victor@3
|
103 sample += gSampleData.samples[gReadPtr++]; // ...read each sample...
|
victor@3
|
104
|
victor@3
|
105 if(gReadPtr >= gSampleData.sampleLen)
|
victor@3
|
106 gReadPtr = -1;
|
victor@3
|
107
|
victor@3
|
108 out = lb0*sample+lb1*gLastX[0]+lb2*gLastX[1]-la1*gLastY[0]-la2*gLastY[1];
|
victor@3
|
109
|
victor@3
|
110 gLastX[1] = gLastX[0];
|
victor@3
|
111 gLastX[0] = out;
|
victor@3
|
112 gLastY[1] = gLastY[0];
|
victor@3
|
113 gLastY[0] = out;
|
victor@3
|
114
|
andrewm@52
|
115 for(unsigned int channel = 0; channel < context->audioChannels; channel++)
|
andrewm@52
|
116 context->audioOut[n * context->audioChannels + channel] = out; // ...and put it in both left and right channel
|
victor@3
|
117
|
victor@3
|
118 }
|
victor@3
|
119
|
victor@3
|
120 // Request that the lower-priority tasks run at next opportunity
|
giuliomoro@301
|
121 Bela_scheduleAuxiliaryTask(gChangeCoeffTask);
|
giuliomoro@301
|
122 Bela_scheduleAuxiliaryTask(gInputTask);
|
victor@3
|
123 }
|
victor@3
|
124
|
victor@3
|
125 // First calculation of coefficients
|
victor@3
|
126
|
victor@3
|
127 void initialise_filter(float freq)
|
victor@3
|
128 {
|
victor@3
|
129 calculate_coeff(freq);
|
victor@3
|
130 }
|
victor@3
|
131
|
victor@3
|
132
|
victor@3
|
133 // Calculate the filter coefficients
|
victor@3
|
134 // second order low pass butterworth filter
|
victor@3
|
135
|
victor@3
|
136 void calculate_coeff(float cutFreq)
|
victor@3
|
137 {
|
victor@3
|
138 // Initialise any previous state (clearing buffers etc.)
|
victor@3
|
139 // to prepare for calls to render()
|
victor@3
|
140 float sampleRate = 44100;
|
victor@3
|
141 double f = 2*M_PI*cutFreq/sampleRate;
|
victor@3
|
142 double denom = 4+2*sqrt(2)*f+f*f;
|
victor@3
|
143 lb0 = f*f/denom;
|
victor@3
|
144 lb1 = 2*lb0;
|
victor@3
|
145 lb2 = lb0;
|
victor@3
|
146 la1 = (2*f*f-8)/denom;
|
victor@3
|
147 la2 = (f*f+4-2*sqrt(2)*f)/denom;
|
victor@3
|
148 gLastX[0] = gLastX [1] = 0;
|
victor@3
|
149 gLastY[0] = gLastY[1] = 0;
|
victor@3
|
150
|
victor@3
|
151 }
|
victor@3
|
152
|
victor@3
|
153
|
victor@3
|
154 // Initialise the auxiliary tasks
|
victor@3
|
155 // and print info
|
victor@3
|
156
|
victor@3
|
157 bool initialise_aux_tasks()
|
victor@3
|
158 {
|
andrewm@303
|
159 if((gChangeCoeffTask = Bela_createAuxiliaryTask(&check_coeff, 90, "bela-check-coeff")) == 0)
|
victor@3
|
160 return false;
|
victor@3
|
161
|
andrewm@303
|
162 if((gInputTask = Bela_createAuxiliaryTask(&read_input, 50, "bela-read-input")) == 0)
|
victor@3
|
163 return false;
|
victor@3
|
164
|
victor@3
|
165 rt_printf("Press 'a' to trigger sample, 's' to stop\n");
|
victor@3
|
166 rt_printf("Press 'z' to low down cut-off freq of 100 Hz, 'x' to raise it up\n");
|
victor@3
|
167 rt_printf("Press 'q' to quit\n");
|
victor@3
|
168
|
victor@3
|
169 return true;
|
victor@3
|
170 }
|
victor@3
|
171
|
victor@3
|
172 // Check if cut-off freq has been changed
|
victor@3
|
173 // and new coefficients are needed
|
victor@3
|
174
|
victor@3
|
175 void check_coeff()
|
victor@3
|
176 {
|
victor@3
|
177 if(gChangeCoeff == 1)
|
victor@3
|
178 {
|
victor@3
|
179 gCutFreq += gFreqDelta;
|
victor@3
|
180 gCutFreq = gCutFreq < 0 ? 0 : gCutFreq;
|
victor@3
|
181 gCutFreq = gCutFreq > 22050 ? 22050 : gCutFreq;
|
victor@3
|
182
|
victor@3
|
183 rt_printf("Cut-off frequency: %f\n", gCutFreq);
|
victor@3
|
184
|
victor@3
|
185 calculate_coeff(gCutFreq);
|
victor@3
|
186 gChangeCoeff = 0;
|
victor@3
|
187 }
|
victor@3
|
188 }
|
victor@3
|
189
|
victor@3
|
190 // This is a lower-priority call to periodically read keyboard input
|
victor@3
|
191 // and trigger samples. By placing it at a lower priority,
|
victor@3
|
192 // it has minimal effect on the audio performance but it will take longer to
|
victor@3
|
193 // complete if the system is under heavy audio load.
|
victor@3
|
194
|
victor@3
|
195 void read_input()
|
victor@3
|
196 {
|
victor@3
|
197 // This is not a real-time task!
|
victor@3
|
198 // Cos getchar is a system call, not handled by Xenomai.
|
victor@3
|
199 // This task will be automatically down graded.
|
victor@3
|
200
|
victor@3
|
201 char keyStroke = '.';
|
victor@3
|
202
|
victor@3
|
203 keyStroke = getchar();
|
victor@3
|
204 while(getchar()!='\n'); // to read the first stroke
|
victor@3
|
205
|
victor@3
|
206 switch (keyStroke)
|
victor@3
|
207 {
|
victor@3
|
208 case 'a':
|
victor@3
|
209 gReadPtr = 0;
|
victor@3
|
210 break;
|
victor@3
|
211 case 's':
|
victor@3
|
212 gReadPtr = -1;
|
victor@3
|
213 break;
|
victor@3
|
214 case 'z':
|
victor@3
|
215 gChangeCoeff = 1;
|
victor@3
|
216 gFreqDelta = -100;
|
victor@3
|
217 break;
|
victor@3
|
218 case 'x':
|
victor@3
|
219 gChangeCoeff = 1;
|
victor@3
|
220 gFreqDelta = 100;
|
victor@3
|
221 break;
|
victor@3
|
222 case 'q':
|
victor@3
|
223 gShouldStop = true;
|
victor@3
|
224 break;
|
victor@3
|
225 default:
|
victor@3
|
226 break;
|
victor@3
|
227 }
|
victor@3
|
228 }
|
victor@3
|
229
|
victor@3
|
230
|
victor@3
|
231
|
andrewm@56
|
232 // cleanup() is called once at the end, after the audio has stopped.
|
andrewm@56
|
233 // Release any resources that were allocated in setup().
|
victor@3
|
234
|
giuliomoro@301
|
235 void cleanup(BelaContext *context, void *userData)
|
victor@3
|
236 {
|
victor@3
|
237 delete[] gSampleData.samples;
|
victor@3
|
238 }
|