annotate core/PRU.cpp @ 456:aa3f38d8a9b6 prerelease

using relative links in examples/core
author Giulio Moro <giuliomoro@yahoo.it>
date Mon, 20 Jun 2016 01:10:16 +0100
parents 3a28a4eb948d
children 5c8f46fcd4d0
rev   line source
andrewm@0 1 /*
andrewm@0 2 * PRU.cpp
andrewm@0 3 *
andrewm@0 4 * Code for communicating with the Programmable Realtime Unit (PRU)
andrewm@0 5 * on the BeagleBone AM335x series processors. The PRU loads and runs
andrewm@0 6 * a separate code image compiled from an assembly file. Here it is
andrewm@0 7 * used to handle audio and SPI ADC/DAC data.
andrewm@0 8 *
andrewm@0 9 * This code is specific to the PRU code in the assembly file; for example,
andrewm@0 10 * it uses certain GPIO resources that correspond to that image.
andrewm@0 11 *
andrewm@0 12 * Created on: May 27, 2014
andrewm@0 13 * Author: andrewm
andrewm@0 14 */
andrewm@0 15
andrewm@0 16 #include "../include/PRU.h"
andrewm@0 17 #include "../include/prussdrv.h"
andrewm@0 18 #include "../include/pruss_intc_mapping.h"
giuliomoro@19 19 #include "../include/digital_gpio_mapping.h"
andrewm@0 20 #include "../include/GPIOcontrol.h"
giuliomoro@301 21 #include "../include/Bela.h"
andrewm@15 22 #include "../include/pru_rtaudio_bin.h"
andrewm@0 23
andrewm@0 24 #include <iostream>
andrewm@0 25 #include <stdlib.h>
andrewm@0 26 #include <cstdio>
andrewm@0 27 #include <cerrno>
andrewm@0 28 #include <fcntl.h>
andrewm@0 29 #include <sys/mman.h>
giuliomoro@16 30 #include <unistd.h>
andrewm@0 31
andrewm@0 32 // Xenomai-specific includes
andrewm@0 33 #include <sys/mman.h>
andrewm@0 34 #include <native/task.h>
andrewm@0 35 #include <native/timer.h>
andrewm@0 36 #include <rtdk.h>
andrewm@0 37
andrewm@0 38 using namespace std;
andrewm@0 39
andrewm@318 40 // Select whether to use NEON-based sample conversion
andrewm@318 41 // (this will probably go away in a future commit once its performance
andrewm@318 42 // is verified over extended use)
andrewm@318 43 #undef USE_NEON_FORMAT_CONVERSION
andrewm@318 44
andrewm@268 45 // PRU memory: PRU0 and PRU1 RAM are 8kB (0x2000) long each
andrewm@268 46 // PRU-SHARED RAM is 12kB (0x3000) long
andrewm@268 47
andrewm@0 48 #define PRU_MEM_MCASP_OFFSET 0x2000 // Offset within PRU-SHARED RAM
andrewm@253 49 #define PRU_MEM_MCASP_LENGTH 0x1000 // Length of McASP memory, in bytes
andrewm@0 50 #define PRU_MEM_DAC_OFFSET 0x0 // Offset within PRU0 RAM
andrewm@0 51 #define PRU_MEM_DAC_LENGTH 0x2000 // Length of ADC+DAC memory, in bytes
andrewm@0 52 #define PRU_MEM_COMM_OFFSET 0x0 // Offset within PRU-SHARED RAM
giuliomoro@19 53 #define PRU_MEM_DIGITAL_OFFSET 0x1000 //Offset within PRU-SHARED RAM
giuliomoro@19 54 #define MEM_DIGITAL_BUFFER1_OFFSET 0x400 //Start pointer to DIGITAL_BUFFER1, which is 256 words.
giuliomoro@16 55 // 256 is the maximum number of frames allowed
andrewm@280 56
andrewm@280 57 // Offsets within CPU <-> PRU communication memory (4 byte slots)
andrewm@0 58 #define PRU_SHOULD_STOP 0
andrewm@0 59 #define PRU_CURRENT_BUFFER 1
andrewm@0 60 #define PRU_BUFFER_FRAMES 2
andrewm@0 61 #define PRU_SHOULD_SYNC 3
andrewm@0 62 #define PRU_SYNC_ADDRESS 4
andrewm@0 63 #define PRU_SYNC_PIN_MASK 5
andrewm@253 64 #define PRU_LED_ADDRESS 6
andrewm@253 65 #define PRU_LED_PIN_MASK 7
andrewm@253 66 #define PRU_FRAME_COUNT 8
andrewm@253 67 #define PRU_USE_SPI 9
andrewm@12 68 #define PRU_SPI_NUM_CHANNELS 10
andrewm@253 69 #define PRU_USE_DIGITAL 11
andrewm@253 70 #define PRU_PRU_NUMBER 12
andrewm@280 71 #define PRU_MUX_CONFIG 13
andrewm@303 72 #define PRU_MUX_END_CHANNEL 14
giuliomoro@16 73
andrewm@280 74 short int digitalPins[NUM_DIGITALS] = {
giuliomoro@16 75 GPIO_NO_BIT_0,
giuliomoro@16 76 GPIO_NO_BIT_1,
giuliomoro@16 77 GPIO_NO_BIT_2,
giuliomoro@16 78 GPIO_NO_BIT_3,
giuliomoro@16 79 GPIO_NO_BIT_4,
giuliomoro@16 80 GPIO_NO_BIT_5,
giuliomoro@16 81 GPIO_NO_BIT_6,
giuliomoro@16 82 GPIO_NO_BIT_7,
giuliomoro@16 83 GPIO_NO_BIT_8,
giuliomoro@16 84 GPIO_NO_BIT_9,
giuliomoro@16 85 GPIO_NO_BIT_10,
giuliomoro@16 86 GPIO_NO_BIT_11,
giuliomoro@16 87 GPIO_NO_BIT_12,
giuliomoro@16 88 GPIO_NO_BIT_13,
giuliomoro@16 89 GPIO_NO_BIT_14,
giuliomoro@16 90 GPIO_NO_BIT_15,
giuliomoro@16 91 };
andrewm@0 92
andrewm@12 93 #define PRU_SAMPLE_INTERVAL_NS 11338 // 88200Hz per SPI sample = 11.338us
andrewm@0 94
andrewm@0 95 #define GPIO0_ADDRESS 0x44E07000
andrewm@0 96 #define GPIO1_ADDRESS 0x4804C000
andrewm@0 97 #define GPIO_SIZE 0x198
andrewm@0 98 #define GPIO_CLEARDATAOUT (0x190 / 4)
andrewm@0 99 #define GPIO_SETDATAOUT (0x194 / 4)
andrewm@0 100
andrewm@0 101 #define TEST_PIN_GPIO_BASE GPIO0_ADDRESS // Use GPIO0(31) for debugging
andrewm@0 102 #define TEST_PIN_MASK (1 << 31)
andrewm@0 103 #define TEST_PIN2_MASK (1 << 26)
andrewm@0 104
andrewm@0 105 #define USERLED3_GPIO_BASE GPIO1_ADDRESS // GPIO1(24) is user LED 3
andrewm@0 106 #define USERLED3_PIN_MASK (1 << 24)
andrewm@0 107
andrewm@0 108 const unsigned int PRU::kPruGPIODACSyncPin = 5; // GPIO0(5); P9-17
andrewm@0 109 const unsigned int PRU::kPruGPIOADCSyncPin = 48; // GPIO1(16); P9-15
andrewm@0 110
andrewm@0 111 const unsigned int PRU::kPruGPIOTestPin = 60; // GPIO1(28); P9-12
andrewm@0 112 const unsigned int PRU::kPruGPIOTestPin2 = 31; // GPIO0(31); P9-13
andrewm@0 113 const unsigned int PRU::kPruGPIOTestPin3 = 26; // GPIO0(26); P8-14
andrewm@0 114
giuliomoro@231 115 extern int gShouldStop;
andrewm@0 116 extern int gRTAudioVerbose;
andrewm@0 117
andrewm@318 118 // These four functions are written in assembly in FormatConvert.S
andrewm@318 119 extern "C" {
andrewm@318 120 void int16_to_float_audio(int numSamples, int16_t *inBuffer, float *outBuffer);
andrewm@318 121 void int16_to_float_analog(int numSamples, uint16_t *inBuffer, float *outBuffer);
andrewm@318 122 void float_to_int16_audio(int numSamples, float *inBuffer, int16_t *outBuffer);
andrewm@318 123 void float_to_int16_analog(int numSamples, float *inBuffer, uint16_t *outBuffer);
andrewm@318 124 }
andrewm@318 125
andrewm@0 126 // Constructor: specify a PRU number (0 or 1)
andrewm@307 127 PRU::PRU(InternalBelaContext *input_context)
andrewm@45 128 : context(input_context), pru_number(0), running(false), analog_enabled(false),
andrewm@45 129 digital_enabled(false), gpio_enabled(false), led_enabled(false),
andrewm@303 130 mux_channels(0),
andrewm@45 131 gpio_test_pin_enabled(false),
andrewm@45 132 pru_buffer_comm(0), pru_buffer_spi_dac(0), pru_buffer_spi_adc(0),
andrewm@45 133 pru_buffer_digital(0), pru_buffer_audio_dac(0), pru_buffer_audio_adc(0),
andrewm@45 134 xenomai_gpio_fd(-1), xenomai_gpio(0)
andrewm@0 135 {
andrewm@0 136
andrewm@0 137 }
andrewm@0 138
andrewm@0 139 // Destructor
andrewm@0 140 PRU::~PRU()
andrewm@0 141 {
andrewm@0 142 if(running)
andrewm@0 143 disable();
andrewm@0 144 if(gpio_enabled)
andrewm@0 145 cleanupGPIO();
andrewm@0 146 if(xenomai_gpio_fd >= 0)
andrewm@0 147 close(xenomai_gpio_fd);
andrewm@0 148 }
andrewm@0 149
andrewm@0 150 // Prepare the GPIO pins needed for the PRU
andrewm@0 151 // If include_test_pin is set, the GPIO output
andrewm@0 152 // is also prepared for an output which can be
andrewm@0 153 // viewed on a scope. If include_led is set,
andrewm@0 154 // user LED 3 on the BBB is taken over by the PRU
andrewm@0 155 // to indicate activity
andrewm@45 156 int PRU::prepareGPIO(int include_test_pin, int include_led)
andrewm@0 157 {
andrewm@45 158 if(context->analogFrames != 0) {
andrewm@0 159 // Prepare DAC CS/ pin: output, high to begin
andrewm@0 160 if(gpio_export(kPruGPIODACSyncPin)) {
andrewm@0 161 if(gRTAudioVerbose)
andrewm@0 162 cout << "Warning: couldn't export DAC sync pin\n";
andrewm@0 163 }
andrewm@0 164 if(gpio_set_dir(kPruGPIODACSyncPin, OUTPUT_PIN)) {
andrewm@0 165 if(gRTAudioVerbose)
andrewm@0 166 cout << "Couldn't set direction on DAC sync pin\n";
andrewm@0 167 return -1;
andrewm@0 168 }
andrewm@0 169 if(gpio_set_value(kPruGPIODACSyncPin, HIGH)) {
andrewm@0 170 if(gRTAudioVerbose)
andrewm@0 171 cout << "Couldn't set value on DAC sync pin\n";
andrewm@0 172 return -1;
andrewm@0 173 }
andrewm@0 174
andrewm@0 175 // Prepare ADC CS/ pin: output, high to begin
andrewm@0 176 if(gpio_export(kPruGPIOADCSyncPin)) {
andrewm@0 177 if(gRTAudioVerbose)
andrewm@0 178 cout << "Warning: couldn't export ADC sync pin\n";
andrewm@0 179 }
andrewm@0 180 if(gpio_set_dir(kPruGPIOADCSyncPin, OUTPUT_PIN)) {
andrewm@0 181 if(gRTAudioVerbose)
andrewm@0 182 cout << "Couldn't set direction on ADC sync pin\n";
andrewm@0 183 return -1;
andrewm@0 184 }
andrewm@0 185 if(gpio_set_value(kPruGPIOADCSyncPin, HIGH)) {
andrewm@0 186 if(gRTAudioVerbose)
andrewm@0 187 cout << "Couldn't set value on ADC sync pin\n";
andrewm@0 188 return -1;
andrewm@0 189 }
andrewm@0 190
andrewm@45 191 analog_enabled = true;
andrewm@0 192 }
andrewm@0 193
andrewm@45 194 if(context->digitalFrames != 0){
andrewm@45 195 for(unsigned int i = 0; i < context->digitalChannels; i++){
giuliomoro@19 196 if(gpio_export(digitalPins[i])) {
giuliomoro@16 197 if(gRTAudioVerbose)
giuliomoro@38 198 cerr << "Warning: couldn't export digital GPIO pin " << digitalPins[i] << "\n"; // this is left as a warning because if the pin has been exported by somebody else, can still be used
giuliomoro@16 199 }
giuliomoro@38 200 if(gpio_set_dir(digitalPins[i], INPUT_PIN)) {
giuliomoro@16 201 if(gRTAudioVerbose)
giuliomoro@38 202 cerr << "Error: Couldn't set direction on digital GPIO pin " << digitalPins[i] << "\n";
giuliomoro@16 203 return -1;
giuliomoro@16 204 }
giuliomoro@16 205 }
andrewm@45 206 digital_enabled = true;
giuliomoro@16 207 }
giuliomoro@16 208
andrewm@0 209 if(include_test_pin) {
andrewm@0 210 // Prepare GPIO test output (for debugging), low to begin
andrewm@0 211 if(gpio_export(kPruGPIOTestPin)) {
andrewm@0 212 if(gRTAudioVerbose)
andrewm@0 213 cout << "Warning: couldn't export GPIO test pin\n";
andrewm@0 214 }
andrewm@0 215 if(gpio_set_dir(kPruGPIOTestPin, OUTPUT_PIN)) {
andrewm@0 216 if(gRTAudioVerbose)
andrewm@0 217 cout << "Couldn't set direction on GPIO test pin\n";
andrewm@0 218 return -1;
andrewm@0 219 }
andrewm@0 220 if(gpio_set_value(kPruGPIOTestPin, LOW)) {
andrewm@0 221 if(gRTAudioVerbose)
andrewm@0 222 cout << "Couldn't set value on GPIO test pin\n";
andrewm@0 223 return -1;
andrewm@0 224 }
andrewm@0 225
andrewm@0 226 if(gpio_export(kPruGPIOTestPin2)) {
andrewm@0 227 if(gRTAudioVerbose)
andrewm@0 228 cout << "Warning: couldn't export GPIO test pin 2\n";
andrewm@0 229 }
andrewm@0 230 if(gpio_set_dir(kPruGPIOTestPin2, OUTPUT_PIN)) {
andrewm@0 231 if(gRTAudioVerbose)
andrewm@0 232 cout << "Couldn't set direction on GPIO test pin 2\n";
andrewm@0 233 return -1;
andrewm@0 234 }
andrewm@0 235 if(gpio_set_value(kPruGPIOTestPin2, LOW)) {
andrewm@0 236 if(gRTAudioVerbose)
andrewm@0 237 cout << "Couldn't set value on GPIO test pin 2\n";
andrewm@0 238 return -1;
andrewm@0 239 }
andrewm@0 240
andrewm@0 241 if(gpio_export(kPruGPIOTestPin3)) {
andrewm@0 242 if(gRTAudioVerbose)
andrewm@0 243 cout << "Warning: couldn't export GPIO test pin 3\n";
andrewm@0 244 }
andrewm@0 245 if(gpio_set_dir(kPruGPIOTestPin3, OUTPUT_PIN)) {
andrewm@0 246 if(gRTAudioVerbose)
andrewm@0 247 cout << "Couldn't set direction on GPIO test pin 3\n";
andrewm@0 248 return -1;
andrewm@0 249 }
andrewm@0 250 if(gpio_set_value(kPruGPIOTestPin3, LOW)) {
andrewm@0 251 if(gRTAudioVerbose)
andrewm@0 252 cout << "Couldn't set value on GPIO test pin 3\n";
andrewm@0 253 return -1;
andrewm@0 254 }
andrewm@0 255 gpio_test_pin_enabled = true;
andrewm@0 256 }
andrewm@0 257
andrewm@0 258 if(include_led) {
andrewm@0 259 // Turn off system function for LED3 so it can be reused by PRU
andrewm@0 260 led_set_trigger(3, "none");
andrewm@0 261 led_enabled = true;
andrewm@0 262 }
andrewm@0 263
andrewm@0 264 gpio_enabled = true;
andrewm@0 265
andrewm@0 266 return 0;
andrewm@0 267 }
andrewm@0 268
andrewm@0 269 // Clean up the GPIO at the end
andrewm@0 270 void PRU::cleanupGPIO()
andrewm@0 271 {
andrewm@0 272 if(!gpio_enabled)
andrewm@0 273 return;
andrewm@45 274 if(analog_enabled) {
andrewm@0 275 gpio_unexport(kPruGPIODACSyncPin);
andrewm@0 276 gpio_unexport(kPruGPIOADCSyncPin);
andrewm@0 277 }
giuliomoro@19 278 if(digital_enabled){
andrewm@45 279 for(unsigned int i = 0; i < context->digitalChannels; i++){
giuliomoro@19 280 gpio_unexport(digitalPins[i]);
giuliomoro@16 281 }
giuliomoro@16 282 }
andrewm@0 283 if(gpio_test_pin_enabled) {
andrewm@0 284 gpio_unexport(kPruGPIOTestPin);
andrewm@0 285 gpio_unexport(kPruGPIOTestPin2);
andrewm@0 286 gpio_unexport(kPruGPIOTestPin3);
andrewm@0 287 }
andrewm@0 288 if(led_enabled) {
andrewm@0 289 // Set LED back to default eMMC status
andrewm@0 290 // TODO: make it go back to its actual value before this program,
andrewm@0 291 // rather than the system default
andrewm@0 292 led_set_trigger(3, "mmc1");
andrewm@0 293 }
andrewm@0 294 gpio_enabled = gpio_test_pin_enabled = false;
andrewm@0 295 }
andrewm@0 296
andrewm@0 297 // Initialise and open the PRU
andrewm@280 298 int PRU::initialise(int pru_num, int frames_per_buffer, int spi_channels, int mux_channels, bool xenomai_test_pin)
andrewm@0 299 {
andrewm@0 300 uint32_t *pruMem = 0;
andrewm@0 301
andrewm@0 302 if(!gpio_enabled) {
andrewm@0 303 rt_printf("initialise() called before GPIO enabled\n");
andrewm@0 304 return 1;
andrewm@0 305 }
andrewm@0 306
andrewm@0 307 pru_number = pru_num;
andrewm@303 308 this->mux_channels = mux_channels;
andrewm@0 309
andrewm@0 310 /* Initialize structure used by prussdrv_pruintc_intc */
andrewm@0 311 /* PRUSS_INTC_INITDATA is found in pruss_intc_mapping.h */
andrewm@0 312 tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA;
andrewm@0 313
andrewm@0 314 /* Allocate and initialize memory */
andrewm@0 315 prussdrv_init();
andrewm@45 316 if(prussdrv_open(PRU_EVTOUT_0)) {
andrewm@0 317 rt_printf("Failed to open PRU driver\n");
andrewm@0 318 return 1;
andrewm@0 319 }
andrewm@0 320
andrewm@0 321 /* Map PRU's INTC */
andrewm@0 322 prussdrv_pruintc_init(&pruss_intc_initdata);
andrewm@0 323
andrewm@0 324 /* Map PRU memory to pointers */
andrewm@0 325 prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, (void **)&pruMem);
andrewm@0 326 pru_buffer_comm = (uint32_t *)&pruMem[PRU_MEM_COMM_OFFSET/sizeof(uint32_t)];
andrewm@0 327 pru_buffer_audio_dac = (int16_t *)&pruMem[PRU_MEM_MCASP_OFFSET/sizeof(uint32_t)];
andrewm@0 328
andrewm@12 329 /* ADC memory starts 2(ch)*2(buffers)*bufsize samples later */
andrewm@45 330 pru_buffer_audio_adc = &pru_buffer_audio_dac[4 * context->audioFrames];
andrewm@0 331
andrewm@45 332 if(analog_enabled) {
andrewm@0 333 prussdrv_map_prumem (pru_number == 0 ? PRUSS0_PRU0_DATARAM : PRUSS0_PRU1_DATARAM, (void **)&pruMem);
andrewm@0 334 pru_buffer_spi_dac = (uint16_t *)&pruMem[PRU_MEM_DAC_OFFSET/sizeof(uint32_t)];
andrewm@0 335
andrewm@12 336 /* ADC memory starts after N(ch)*2(buffers)*bufsize samples */
andrewm@45 337 pru_buffer_spi_adc = &pru_buffer_spi_dac[2 * context->analogChannels * context->analogFrames];
andrewm@0 338 }
andrewm@0 339 else {
andrewm@0 340 pru_buffer_spi_dac = pru_buffer_spi_adc = 0;
andrewm@0 341 }
andrewm@0 342
giuliomoro@19 343 if(digital_enabled) {
giuliomoro@16 344 prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, (void **)&pruMem);
giuliomoro@19 345 pru_buffer_digital = (uint32_t *)&pruMem[PRU_MEM_DIGITAL_OFFSET/sizeof(uint32_t)];
giuliomoro@16 346 }
giuliomoro@16 347 else {
giuliomoro@19 348 pru_buffer_digital = 0;
giuliomoro@16 349 }
andrewm@45 350
andrewm@0 351 /* Set up flags */
andrewm@0 352 pru_buffer_comm[PRU_SHOULD_STOP] = 0;
andrewm@0 353 pru_buffer_comm[PRU_CURRENT_BUFFER] = 0;
andrewm@45 354 pru_buffer_comm[PRU_BUFFER_FRAMES] = context->analogFrames;
andrewm@0 355 pru_buffer_comm[PRU_SHOULD_SYNC] = 0;
andrewm@0 356 pru_buffer_comm[PRU_SYNC_ADDRESS] = 0;
andrewm@0 357 pru_buffer_comm[PRU_SYNC_PIN_MASK] = 0;
andrewm@253 358 pru_buffer_comm[PRU_PRU_NUMBER] = pru_number;
andrewm@280 359
andrewm@280 360 if(mux_channels == 2)
andrewm@280 361 pru_buffer_comm[PRU_MUX_CONFIG] = 1;
andrewm@280 362 else if(mux_channels == 4)
andrewm@280 363 pru_buffer_comm[PRU_MUX_CONFIG] = 2;
andrewm@280 364 else if(mux_channels == 8)
andrewm@280 365 pru_buffer_comm[PRU_MUX_CONFIG] = 3;
andrewm@280 366 else
andrewm@280 367 pru_buffer_comm[PRU_MUX_CONFIG] = 0;
andrewm@280 368
andrewm@0 369 if(led_enabled) {
andrewm@0 370 pru_buffer_comm[PRU_LED_ADDRESS] = USERLED3_GPIO_BASE;
andrewm@0 371 pru_buffer_comm[PRU_LED_PIN_MASK] = USERLED3_PIN_MASK;
andrewm@0 372 }
andrewm@0 373 else {
andrewm@0 374 pru_buffer_comm[PRU_LED_ADDRESS] = 0;
andrewm@0 375 pru_buffer_comm[PRU_LED_PIN_MASK] = 0;
andrewm@0 376 }
andrewm@45 377 if(analog_enabled) {
andrewm@0 378 pru_buffer_comm[PRU_USE_SPI] = 1;
andrewm@45 379 pru_buffer_comm[PRU_SPI_NUM_CHANNELS] = context->analogChannels;
andrewm@0 380 }
andrewm@0 381 else {
andrewm@0 382 pru_buffer_comm[PRU_USE_SPI] = 0;
andrewm@12 383 pru_buffer_comm[PRU_SPI_NUM_CHANNELS] = 0;
andrewm@0 384 }
giuliomoro@19 385 if(digital_enabled) {
giuliomoro@38 386 pru_buffer_comm[PRU_USE_DIGITAL] = 1;
giuliomoro@38 387 //TODO: add mask
giuliomoro@16 388 }
giuliomoro@16 389 else {
giuliomoro@38 390 pru_buffer_comm[PRU_USE_DIGITAL] = 0;
giuliomoro@38 391
giuliomoro@16 392 }
andrewm@0 393
giuliomoro@38 394 /* Clear ADC and DAC memory.*/
giuliomoro@38 395 //TODO: this initialisation should only address the memory effectively used by these buffers, i.e.:depend on the number of frames
giuliomoro@38 396 // (otherwise might cause issues if we move memory locations later on)
andrewm@45 397 if(analog_enabled) {
andrewm@0 398 for(int i = 0; i < PRU_MEM_DAC_LENGTH / 2; i++)
andrewm@0 399 pru_buffer_spi_dac[i] = 0;
andrewm@0 400 }
andrewm@320 401 if(digital_enabled){
andrewm@320 402 for(int i = 0; i < PRU_MEM_DIGITAL_OFFSET*2; i++)
andrewm@320 403 pru_buffer_digital[i] = 0x0000ffff; // set to all inputs, to avoid unexpected spikes
andrewm@320 404 }
andrewm@0 405 for(int i = 0; i < PRU_MEM_MCASP_LENGTH / 2; i++)
andrewm@0 406 pru_buffer_audio_dac[i] = 0;
andrewm@45 407
andrewm@0 408 /* If using GPIO test pin for Xenomai (for debugging), initialise the pointer now */
andrewm@0 409 if(xenomai_test_pin && xenomai_gpio_fd < 0) {
andrewm@0 410 xenomai_gpio_fd = open("/dev/mem", O_RDWR);
andrewm@0 411 if(xenomai_gpio_fd < 0)
andrewm@0 412 rt_printf("Unable to open /dev/mem for GPIO test pin\n");
andrewm@0 413 else {
andrewm@0 414 xenomai_gpio = (uint32_t *)mmap(0, GPIO_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, xenomai_gpio_fd, TEST_PIN_GPIO_BASE);
andrewm@0 415 if(xenomai_gpio == MAP_FAILED) {
andrewm@0 416 rt_printf("Unable to map GPIO address for test pin\n");
andrewm@0 417 xenomai_gpio = 0;
andrewm@0 418 close(xenomai_gpio_fd);
andrewm@0 419 xenomai_gpio_fd = -1;
andrewm@0 420 }
andrewm@0 421 }
andrewm@0 422 }
andrewm@0 423
andrewm@81 424 // Allocate audio buffers
andrewm@318 425 #ifdef USE_NEON_FORMAT_CONVERSION
andrewm@318 426 if(posix_memalign((void **)&context->audioIn, 16, 2 * context->audioFrames * sizeof(float))) {
andrewm@318 427 printf("Error allocating audio input buffer\n");
andrewm@318 428 return 1;
andrewm@318 429 }
andrewm@318 430 if(posix_memalign((void **)&context->audioOut, 16, 2 * context->audioFrames * sizeof(float))) {
andrewm@318 431 printf("Error allocating audio output buffer\n");
andrewm@318 432 return 1;
andrewm@318 433 }
andrewm@318 434 #else
andrewm@81 435 context->audioIn = (float *)malloc(2 * context->audioFrames * sizeof(float));
andrewm@81 436 context->audioOut = (float *)malloc(2 * context->audioFrames * sizeof(float));
andrewm@81 437 if(context->audioIn == 0 || context->audioOut == 0) {
andrewm@81 438 rt_printf("Error: couldn't allocate audio buffers\n");
andrewm@81 439 return 1;
andrewm@81 440 }
andrewm@318 441 #endif
andrewm@318 442
andrewm@81 443 // Allocate analog buffers
andrewm@81 444 if(analog_enabled) {
andrewm@318 445 #ifdef USE_NEON_FORMAT_CONVERSION
andrewm@318 446 if(posix_memalign((void **)&context->analogIn, 16,
andrewm@318 447 context->analogChannels * context->analogFrames * sizeof(float))) {
andrewm@318 448 printf("Error allocating analog input buffer\n");
andrewm@318 449 return 1;
andrewm@318 450 }
andrewm@318 451 if(posix_memalign((void **)&context->analogOut, 16,
andrewm@318 452 context->analogChannels * context->analogFrames * sizeof(float))) {
andrewm@318 453 printf("Error allocating analog output buffer\n");
andrewm@318 454 return 1;
andrewm@318 455 }
andrewm@318 456 last_analog_out_frame = (float *)malloc(context->analogChannels * sizeof(float));
andrewm@318 457
andrewm@318 458 if(last_analog_out_frame == 0) {
andrewm@318 459 rt_printf("Error: couldn't allocate analog persistence buffer\n");
andrewm@318 460 return 1;
andrewm@318 461 }
andrewm@318 462 #else
andrewm@81 463 context->analogIn = (float *)malloc(context->analogChannels * context->analogFrames * sizeof(float));
andrewm@81 464 context->analogOut = (float *)malloc(context->analogChannels * context->analogFrames * sizeof(float));
andrewm@81 465 last_analog_out_frame = (float *)malloc(context->analogChannels * sizeof(float));
andrewm@81 466
andrewm@81 467 if(context->analogIn == 0 || context->analogOut == 0 || last_analog_out_frame == 0) {
andrewm@81 468 rt_printf("Error: couldn't allocate analog buffers\n");
andrewm@81 469 return 1;
andrewm@81 470 }
andrewm@318 471 #endif
andrewm@318 472
andrewm@81 473 memset(last_analog_out_frame, 0, context->analogChannels * sizeof(float));
andrewm@81 474 }
andrewm@81 475
andrewm@81 476 // Allocate digital buffers
andrewm@81 477 digital_buffer0 = pru_buffer_digital;
andrewm@81 478 digital_buffer1 = pru_buffer_digital + MEM_DIGITAL_BUFFER1_OFFSET / sizeof(uint32_t);
andrewm@81 479 if(digital_enabled) {
andrewm@81 480 last_digital_buffer = (uint32_t *)malloc(context->digitalFrames * sizeof(uint32_t)); //temp buffer to hold previous states
andrewm@81 481 if(last_digital_buffer == 0) {
andrewm@81 482 rt_printf("Error: couldn't allocate digital buffers\n");
andrewm@81 483 return 1;
andrewm@81 484 }
andrewm@81 485
andrewm@81 486 for(unsigned int n = 0; n < context->digitalFrames; n++){
andrewm@81 487 // Initialize lastDigitalFrames to all inputs
andrewm@81 488 last_digital_buffer[n] = 0x0000ffff;
andrewm@81 489 }
andrewm@81 490 }
andrewm@81 491
andrewm@81 492 context->digital = digital_buffer0;
andrewm@81 493
andrewm@0 494 return 0;
andrewm@0 495 }
andrewm@0 496
andrewm@0 497 // Run the code image in the specified file
giuliomoro@16 498 int PRU::start(char * const filename)
andrewm@0 499 {
andrewm@0 500 /* Clear any old interrupt */
andrewm@45 501 prussdrv_pru_clear_event(PRU_EVTOUT_0, PRU0_ARM_INTERRUPT);
andrewm@45 502
giuliomoro@16 503 /* Load and execute binary on PRU */
giuliomoro@16 504 if(filename[0] == '\0') { //if the string is empty, load the embedded code
giuliomoro@16 505 if(gRTAudioVerbose)
giuliomoro@16 506 rt_printf("Using embedded PRU code\n");
giuliomoro@16 507 if(prussdrv_exec_code(pru_number, PRUcode, sizeof(PRUcode))) {
giuliomoro@16 508 rt_printf("Failed to execute PRU code\n");
giuliomoro@16 509 return 1;
giuliomoro@16 510 }
giuliomoro@16 511 } else {
giuliomoro@16 512 if(gRTAudioVerbose)
giuliomoro@16 513 rt_printf("Using PRU code from %s\n",filename);
giuliomoro@16 514 if(prussdrv_exec_program(pru_number, filename)) {
giuliomoro@16 515 rt_printf("Failed to execute PRU code from %s\n", filename);
giuliomoro@16 516 return 1;
giuliomoro@16 517 }
giuliomoro@16 518 }
andrewm@0 519
andrewm@0 520 running = true;
andrewm@0 521 return 0;
andrewm@0 522 }
andrewm@0 523
andrewm@0 524 // Main loop to read and write data from/to PRU
andrewm@45 525 void PRU::loop(RT_INTR *pru_interrupt, void *userData)
andrewm@0 526 {
andrewm@303 527 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@50 528 RTIME irqTimeout = PRU_SAMPLE_INTERVAL_NS * 1024; // Timeout for PRU interrupt: about 10ms, much longer than any expected period
andrewm@50 529 #else
andrewm@0 530 // Polling interval is 1/4 of the period
andrewm@50 531 RTIME sleepTime = PRU_SAMPLE_INTERVAL_NS * (context->analogChannels / 2) * context->analogFrames / 4;
andrewm@50 532 #endif
andrewm@45 533
andrewm@45 534 uint32_t pru_audio_offset, pru_spi_offset;
andrewm@0 535
andrewm@81 536 // Before starting, look at the last state of the analog and digital outputs which might
andrewm@81 537 // have been changed by the user during the setup() function. This lets us start with pin
andrewm@81 538 // directions and output values at something other than defaults.
andrewm@81 539
andrewm@81 540 if(analog_enabled) {
andrewm@303 541 if(context->flags & BELA_FLAG_ANALOG_OUTPUTS_PERSIST) {
andrewm@81 542 // Remember the content of the last_analog_out_frame
andrewm@81 543 for(unsigned int ch = 0; ch < context->analogChannels; ch++){
andrewm@81 544 last_analog_out_frame[ch] = context->analogOut[context->analogChannels * (context->analogFrames - 1) + ch];
andrewm@81 545 }
andrewm@81 546 }
andrewm@0 547 }
andrewm@45 548
andrewm@45 549 if(digital_enabled) {
andrewm@45 550 for(unsigned int n = 0; n < context->digitalFrames; n++){
andrewm@81 551 last_digital_buffer[n] = context->digital[n];
andrewm@45 552 }
giuliomoro@38 553 }
andrewm@45 554
andrewm@45 555 // TESTING
andrewm@50 556 // uint32_t testCount = 0;
andrewm@45 557 // RTIME startTime = rt_timer_read();
andrewm@45 558
andrewm@303 559 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@56 560 int result;
andrewm@56 561 #else
andrewm@50 562 // Which buffer the PRU was last processing
andrewm@50 563 uint32_t lastPRUBuffer = 0;
andrewm@50 564 #endif
andrewm@50 565
andrewm@0 566 while(!gShouldStop) {
andrewm@303 567 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@45 568 // Wait for PRU to move to change buffers;
andrewm@45 569 // PRU will send an interrupts which we wait for
andrewm@45 570 rt_intr_enable(pru_interrupt);
andrewm@45 571 while(!gShouldStop) {
andrewm@45 572 result = rt_intr_wait(pru_interrupt, irqTimeout);
andrewm@45 573 if(result >= 0)
andrewm@45 574 break;
andrewm@45 575 else if(result == -ETIMEDOUT)
andrewm@45 576 rt_printf("Warning: PRU timeout!\n");
andrewm@45 577 else {
andrewm@45 578 rt_printf("Error: wait for interrupt failed (%d)\n", result);
andrewm@45 579 gShouldStop = 1;
andrewm@45 580 }
andrewm@0 581 }
andrewm@45 582
andrewm@45 583 // Clear pending PRU interrupt
andrewm@45 584 prussdrv_pru_clear_event(PRU_EVTOUT_1, PRU1_ARM_INTERRUPT);
andrewm@50 585 #else
andrewm@50 586 // Poll
andrewm@50 587 while(pru_buffer_comm[PRU_CURRENT_BUFFER] == lastPRUBuffer && !gShouldStop) {
andrewm@50 588 rt_task_sleep(sleepTime);
andrewm@50 589 }
andrewm@50 590
andrewm@50 591 lastPRUBuffer = pru_buffer_comm[PRU_CURRENT_BUFFER];
andrewm@50 592 #endif
andrewm@45 593
andrewm@0 594 if(gShouldStop)
andrewm@0 595 break;
andrewm@0 596
andrewm@45 597 // Check which buffer we're on-- will have been set right
andrewm@45 598 // before the interrupt was asserted
andrewm@45 599 if(pru_buffer_comm[PRU_CURRENT_BUFFER] == 1) {
andrewm@45 600 // PRU is on buffer 1. We read and write to buffer 0
andrewm@45 601 pru_audio_offset = 0;
andrewm@45 602 pru_spi_offset = 0;
andrewm@45 603 if(digital_enabled)
andrewm@81 604 context->digital = digital_buffer0;
andrewm@45 605 }
andrewm@45 606 else {
andrewm@45 607 // PRU is on buffer 0. We read and write to buffer 1
andrewm@45 608 pru_audio_offset = context->audioFrames * 2;
andrewm@45 609 pru_spi_offset = context->analogFrames * context->analogChannels;
andrewm@45 610 if(digital_enabled)
andrewm@81 611 context->digital = digital_buffer1;
andrewm@45 612 }
andrewm@45 613
andrewm@45 614 // FIXME: some sort of margin is needed here to prevent the audio
andrewm@45 615 // code from completely eating the Linux system
andrewm@50 616 // testCount++;
andrewm@45 617 //rt_task_sleep(sleepTime*4);
andrewm@45 618 //rt_task_sleep(sleepTime/4);
andrewm@45 619
andrewm@0 620 if(xenomai_gpio != 0) {
andrewm@0 621 // Set the test pin high
andrewm@0 622 xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN_MASK;
andrewm@0 623 }
andrewm@0 624
andrewm@45 625 // Convert short (16-bit) samples to float
andrewm@318 626 #ifdef USE_NEON_FORMAT_CONVERSION
andrewm@318 627 int16_to_float_audio(2 * context->audioFrames, &pru_buffer_audio_adc[pru_audio_offset], context->audioIn);
andrewm@318 628 #else
andrewm@318 629 for(unsigned int n = 0; n < 2 * context->audioFrames; n++) {
giuliomoro@231 630 context->audioIn[n] = (float)pru_buffer_audio_adc[n + pru_audio_offset] / 32768.0f;
andrewm@318 631 }
andrewm@318 632 #endif
andrewm@318 633
andrewm@45 634 if(analog_enabled) {
andrewm@303 635 if(mux_channels != 0) {
andrewm@303 636 // If multiplexer is enabled, find out which channels we have by pulling out
andrewm@303 637 // the place that it ended.
andrewm@303 638 // int lastMuxChannel = pru_buffer_comm[PRU_MUX_END_CHANNEL];
andrewm@303 639
andrewm@303 640 // TODO
andrewm@303 641 }
andrewm@303 642
andrewm@318 643 #ifdef USE_NEON_FORMAT_CONVERSION
andrewm@318 644 int16_to_float_analog(context->analogChannels * context->analogFrames,
andrewm@318 645 &pru_buffer_spi_adc[pru_spi_offset], context->analogIn);
andrewm@318 646 #else
andrewm@318 647 for(unsigned int n = 0; n < context->analogChannels * context->analogFrames; n++) {
giuliomoro@231 648 context->analogIn[n] = (float)pru_buffer_spi_adc[n + pru_spi_offset] / 65536.0f;
andrewm@318 649 }
andrewm@318 650 #endif
andrewm@45 651
andrewm@303 652 if(context->flags & BELA_FLAG_ANALOG_OUTPUTS_PERSIST) {
andrewm@45 653 // Initialize the output buffer with the values that were in the last frame of the previous output
andrewm@45 654 for(unsigned int ch = 0; ch < context->analogChannels; ch++){
andrewm@45 655 for(unsigned int n = 0; n < context->analogFrames; n++){
andrewm@81 656 context->analogOut[n * context->analogChannels + ch] = last_analog_out_frame[ch];
andrewm@45 657 }
giuliomoro@23 658 }
giuliomoro@23 659 }
andrewm@45 660 else {
andrewm@45 661 // Outputs are 0 unless set otherwise
andrewm@45 662 memset(context->analogOut, 0, context->analogChannels * context->analogFrames * sizeof(float));
giuliomoro@23 663 }
andrewm@45 664 }
andrewm@45 665
andrewm@45 666 if(digital_enabled){
andrewm@45 667 // Use past digital values to initialize the array properly.
andrewm@45 668 // For each frame:
andrewm@45 669 // - pins previously set as outputs will keep the output value they had in the last frame of the previous buffer,
andrewm@45 670 // - pins previously set as inputs will carry the newly read input value
andrewm@45 671
andrewm@45 672 for(unsigned int n = 0; n < context->digitalFrames; n++){
andrewm@81 673 uint16_t inputs = last_digital_buffer[n] & 0xffff; // half-word, has 1 for inputs and 0 for outputs
andrewm@45 674
andrewm@45 675 uint16_t outputs = ~inputs; // half-word has 1 for outputs and 0 for inputs;
andrewm@81 676 context->digital[n] = (last_digital_buffer[context->digitalFrames - 1] & (outputs << 16)) | // keep output values set in the last frame of the previous buffer
andrewm@45 677 (context->digital[n] & (inputs << 16)) | // inputs from current context->digital[n];
andrewm@81 678 (last_digital_buffer[n] & (inputs)); // keep pin configuration from previous context->digital[n]
andrewm@45 679 // context->digital[n]=digitalBufferTemp[n]; //ignores inputs
andrewm@45 680 }
andrewm@45 681 }
andrewm@45 682
andrewm@45 683 // Call user render function
andrewm@45 684 // ***********************
andrewm@307 685 render((BelaContext *)context, userData);
andrewm@45 686 // ***********************
andrewm@45 687
andrewm@45 688 if(analog_enabled) {
andrewm@303 689 if(context->flags & BELA_FLAG_ANALOG_OUTPUTS_PERSIST) {
andrewm@81 690 // Remember the content of the last_analog_out_frame
andrewm@45 691 for(unsigned int ch = 0; ch < context->analogChannels; ch++){
andrewm@81 692 last_analog_out_frame[ch] = context->analogOut[context->analogChannels * (context->analogFrames - 1) + ch];
andrewm@45 693 }
andrewm@45 694 }
andrewm@45 695
andrewm@45 696 // Convert float back to short for SPI output
andrewm@318 697 #ifdef USE_NEON_FORMAT_CONVERSION
andrewm@318 698 float_to_int16_analog(context->analogChannels * context->analogFrames,
andrewm@318 699 context->analogOut, (uint16_t*)&pru_buffer_spi_dac[pru_spi_offset]);
andrewm@318 700 #else
andrewm@45 701 for(unsigned int n = 0; n < context->analogChannels * context->analogFrames; n++) {
giuliomoro@231 702 int out = context->analogOut[n] * 65536.0f;
giuliomoro@16 703 if(out < 0) out = 0;
giuliomoro@16 704 else if(out > 65535) out = 65535;
andrewm@45 705 pru_buffer_spi_dac[n + pru_spi_offset] = (uint16_t)out;
giuliomoro@16 706 }
andrewm@318 707 #endif
giuliomoro@16 708 }
andrewm@45 709
andrewm@45 710 if(digital_enabled) { // keep track of past digital values
andrewm@45 711 for(unsigned int n = 0; n < context->digitalFrames; n++){
andrewm@81 712 last_digital_buffer[n] = context->digital[n];
andrewm@45 713 }
andrewm@45 714 }
andrewm@45 715
andrewm@45 716 // Convert float back to short for audio
andrewm@318 717 #ifdef USE_NEON_FORMAT_CONVERSION
andrewm@318 718 float_to_int16_audio(2 * context->audioFrames, context->audioOut, &pru_buffer_audio_dac[pru_audio_offset]);
andrewm@318 719 #else
andrewm@45 720 for(unsigned int n = 0; n < 2 * context->audioFrames; n++) {
giuliomoro@231 721 int out = context->audioOut[n] * 32768.0f;
andrewm@0 722 if(out < -32768) out = -32768;
andrewm@0 723 else if(out > 32767) out = 32767;
andrewm@45 724 pru_buffer_audio_dac[n + pru_audio_offset] = (int16_t)out;
andrewm@0 725 }
andrewm@318 726 #endif
andrewm@0 727
andrewm@52 728 // Increment total number of samples that have elapsed
andrewm@311 729 context->audioFramesElapsed += context->audioFrames;
andrewm@52 730
andrewm@0 731 if(xenomai_gpio != 0) {
andrewm@0 732 // Set the test pin high
andrewm@0 733 xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN_MASK;
andrewm@0 734 }
l@258 735
giuliomoro@301 736 Bela_autoScheduleAuxiliaryTasks();
andrewm@0 737
andrewm@45 738 // FIXME: TESTING!!
andrewm@50 739 // if(testCount > 100000)
andrewm@50 740 // break;
andrewm@45 741 }
andrewm@0 742
andrewm@303 743 #ifdef BELA_USE_XENOMAI_INTERRUPTS
andrewm@45 744 // Turn off the interrupt for the PRU if it isn't already off
andrewm@45 745 rt_intr_disable(pru_interrupt);
andrewm@50 746 #endif
andrewm@0 747
andrewm@45 748 // FIXME: TESTING
andrewm@45 749 // RTIME endTime = rt_timer_read();
andrewm@45 750 // RTIME diffTime = endTime - startTime;
andrewm@45 751 // rt_printf("%d blocks elapsed in %f seconds, %f Hz block rate\n", testCount, ((float)diffTime / 1.0e9), (float)testCount / ((float)diffTime / 1.0e9));
andrewm@0 752
andrewm@0 753 // Tell PRU to stop
andrewm@0 754 pru_buffer_comm[PRU_SHOULD_STOP] = 1;
andrewm@0 755
andrewm@45 756 // Wait two buffer lengths for the PRU to finish
andrewm@45 757 rt_task_sleep(PRU_SAMPLE_INTERVAL_NS * context->analogFrames * 4 * 2);
andrewm@45 758
andrewm@45 759 // Clean up after ourselves
andrewm@45 760 free(context->audioIn);
andrewm@45 761 free(context->audioOut);
andrewm@45 762
andrewm@45 763 if(analog_enabled) {
andrewm@45 764 free(context->analogIn);
andrewm@45 765 free(context->analogOut);
andrewm@81 766 free(last_analog_out_frame);
andrewm@45 767 }
andrewm@45 768
andrewm@45 769 if(digital_enabled) {
andrewm@81 770 free(last_digital_buffer);
andrewm@45 771 }
andrewm@45 772
andrewm@45 773 context->audioIn = context->audioOut = 0;
andrewm@45 774 context->analogIn = context->analogOut = 0;
andrewm@45 775 context->digital = 0;
andrewm@0 776 }
andrewm@0 777
andrewm@0 778 // Wait for an interrupt from the PRU indicate it is finished
andrewm@0 779 void PRU::waitForFinish()
andrewm@0 780 {
andrewm@0 781 if(!running)
andrewm@0 782 return;
andrewm@45 783 prussdrv_pru_wait_event (PRU_EVTOUT_0);
andrewm@45 784 prussdrv_pru_clear_event(PRU_EVTOUT_0, PRU0_ARM_INTERRUPT);
andrewm@0 785 }
andrewm@0 786
andrewm@0 787 // Turn off the PRU when done
andrewm@0 788 void PRU::disable()
andrewm@0 789 {
andrewm@0 790 /* Disable PRU and close memory mapping*/
andrewm@0 791 prussdrv_pru_disable(pru_number);
andrewm@0 792 prussdrv_exit();
andrewm@0 793 running = false;
andrewm@0 794 }
andrewm@0 795
andrewm@0 796 // Debugging
andrewm@0 797 void PRU::setGPIOTestPin()
andrewm@0 798 {
andrewm@0 799 if(!xenomai_gpio)
andrewm@0 800 return;
andrewm@0 801 xenomai_gpio[GPIO_SETDATAOUT] = TEST_PIN2_MASK;
andrewm@0 802 }
andrewm@0 803
andrewm@0 804 void PRU::clearGPIOTestPin()
andrewm@0 805 {
andrewm@0 806 if(!xenomai_gpio)
andrewm@0 807 return;
andrewm@0 808 xenomai_gpio[GPIO_CLEARDATAOUT] = TEST_PIN2_MASK;
andrewm@0 809 }