annotate projects/d-box/render.cpp @ 38:a9af130097e8 staging

GPIO pins are initialised as inputs by ARM to avoid spikes at startup, through gpio_set_dir. The buffers are set to 0x000ffff during initialisation. LastDigitalBuffer is initialized to 0x0000ffff.
author Giulio Moro <giuliomoro@yahoo.it>
date Tue, 12 May 2015 23:48:37 +0100
parents 06f93bef7dd2
children 42a683058b6a
rev   line source
andrewm@0 1 /*
andrewm@0 2 * render.cpp
andrewm@0 3 *
andrewm@0 4 * Created on: May 28, 2014
andrewm@0 5 * Author: Victor Zappi
andrewm@0 6 */
andrewm@0 7
andrewm@0 8 #include "../../include/RTAudio.h"
andrewm@0 9 #include "../../include/PRU.h"
andrewm@0 10 #include "StatusLED.h"
andrewm@0 11 #include "config.h"
andrewm@0 12 #include "OscillatorBank.h"
andrewm@0 13 #include "FeedbackOscillator.h"
andrewm@0 14 #include "ADSR.h"
andrewm@0 15 #include "FIRfilter.h"
andrewm@0 16 #include <assert.h>
andrewm@0 17 #include <cmath>
andrewm@0 18 #include <vector>
andrewm@0 19
andrewm@0 20 #undef DBOX_CAPE_TEST
andrewm@0 21
andrewm@0 22 #define N_OCT 4.0 // maximum number of octaves on sensor 1
andrewm@0 23
andrewm@0 24 extern vector<OscillatorBank*> gOscBanks;
andrewm@0 25 extern int gCurrentOscBank;
andrewm@0 26 extern int gNextOscBank;
andrewm@0 27 extern PRU *gPRU;
andrewm@0 28 extern StatusLED gStatusLED;
andrewm@0 29 extern bool gIsLoading;
andrewm@0 30 extern bool gAudioIn;
andrewm@0 31 extern int gPeriodSize;
andrewm@0 32
andrewm@0 33 float *gOscillatorBuffer1, *gOscillatorBuffer2;
andrewm@0 34 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
andrewm@0 35 int gOscillatorBufferReadPointer = 0;
andrewm@0 36 int gOscillatorBufferReadCurrentSize = 0;
andrewm@0 37 int gOscillatorBufferWriteCurrentSize = 0;
andrewm@0 38 bool gOscillatorNeedsRender = false;
andrewm@0 39
andrewm@0 40 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
andrewm@0 41
andrewm@0 42 // Wavetable which changes in response to an oscillator
andrewm@0 43 float *gDynamicWavetable;
andrewm@0 44 int gDynamicWavetableLength;
andrewm@0 45 bool gDynamicWavetableNeedsRender = false;
andrewm@0 46
andrewm@0 47 // These variables handle the hysteresis oscillator used for setting the playback speed
andrewm@0 48 bool gSpeedHysteresisOscillatorRising = false;
andrewm@0 49 int gSpeedHysteresisLastTrigger = 0;
andrewm@0 50
andrewm@0 51 // These variables handle the feedback oscillator used for controlling the wavetable
andrewm@0 52 FeedbackOscillator gFeedbackOscillator;
andrewm@0 53 float *gFeedbackOscillatorTable;
andrewm@0 54 int gFeedbackOscillatorTableLength;
andrewm@0 55
andrewm@0 56 // This comes from sensor.cpp where it records the most recent touch location on
andrewm@0 57 // sensor 0.
andrewm@0 58 extern float gSensor0LatestTouchPos;
andrewm@0 59 extern int gSensor0LatestTouchNum;
andrewm@0 60 uint16_t gPitchLatestInput = 0;
andrewm@0 61
andrewm@0 62 extern float gSensor1LatestTouchPos[];
andrewm@0 63 //extern float gSensor1LatestTouchSizes[];
andrewm@0 64 extern int gSensor1LatestTouchCount;
andrewm@0 65 extern int gSensor1LatestTouchIndex;
andrewm@0 66 int gSensor1LastTouchIndex = -1;
andrewm@0 67 int gSensor1InputDelayCounter = -1;
andrewm@0 68 int gSensor1InputIndex = 0;
andrewm@0 69 float gSensor1MatrixTouchPos[5] = {0};
andrewm@0 70
andrewm@0 71 // FSR value from matrix input
andrewm@0 72 extern int gLastFSRValue;
andrewm@0 73
andrewm@0 74 // Loop points from matrix input 4
andrewm@0 75 const int gLoopPointsInputBufferSize = 256;
andrewm@0 76 uint16_t gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
andrewm@0 77 int gLoopPointsInputBufferPointer = 0;
andrewm@0 78 int gLoopPointMin = 0, gLoopPointMax = 0;
andrewm@0 79
andrewm@0 80 // multiplier to activate or mute audio in
andrewm@0 81 int audioInStatus = 0;
andrewm@0 82
andrewm@0 83 // xenomai timer
andrewm@0 84 SRTIME prevChangeNs = 0;
andrewm@0 85
andrewm@0 86 // pitch vars
andrewm@0 87 float octaveSplitter;
andrewm@0 88 u_int16_t semitones[((int)N_OCT*12)+1];
andrewm@0 89 float deltaTouch = 0;
andrewm@0 90 float deltaWeightP = 0.5;
andrewm@0 91 float deltaWeightI = 0.0005;
andrewm@0 92
andrewm@0 93 // filter vars
andrewm@0 94 ne10_fir_instance_f32_t filter[2];
andrewm@0 95 ne10_float32_t *filterIn[2];
andrewm@0 96 ne10_float32_t *filterOut[2];
andrewm@0 97 ne10_uint32_t blockSize;
andrewm@0 98 ne10_float32_t *filterState[2];
andrewm@0 99 ne10_float32_t prevFiltered[2];
andrewm@0 100 int filterGain = 80;
andrewm@0 101 ADSR PeakBurst[2];
andrewm@0 102 float peak[2];
andrewm@0 103 float peakThresh = 0.2;
andrewm@0 104
andrewm@0 105 // Tasks for lower-priority calculation
andrewm@0 106 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
andrewm@0 107
andrewm@0 108
andrewm@0 109 extern "C" {
andrewm@0 110 // Function prototype for ARM assembly implementation of oscillator bank
andrewm@0 111 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
andrewm@0 112 int activePartialNum, int lookupTableSize,
andrewm@0 113 float *phases, float *frequencies, float *amplitudes,
andrewm@0 114 float *freqDerivatives, float *ampDerivatives,
andrewm@0 115 float *lookupTable);
andrewm@0 116
andrewm@0 117 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
andrewm@0 118 float *tableIn, float *tableOut);
andrewm@0 119 }
andrewm@0 120
andrewm@0 121 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
andrewm@0 122 float *tableIn, float *tableOut,
andrewm@0 123 float *sineTable, float sineMix);
andrewm@0 124
andrewm@0 125 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold,
andrewm@0 126 uint16_t fallingThreshold, bool *rising);
andrewm@0 127
andrewm@0 128 #ifdef DBOX_CAPE_TEST
andrewm@0 129 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
andrewm@0 130 uint16_t *matrixIn, uint16_t *matrixOut);
andrewm@0 131 #endif
andrewm@0 132
andrewm@14 133 bool initialise_render(int numMatrixChannels, int numAudioChannels,
andrewm@14 134 int numMatrixFramesPerPeriod,
andrewm@14 135 int numAudioFramesPerPeriod,
andrewm@14 136 float matrixSampleRate, float audioSampleRate,
andrewm@14 137 void *userData) {
andrewm@0 138 int oscBankHopSize = *(int *)userData;
andrewm@0 139
andrewm@14 140 if(numMatrixChannels != 8) {
andrewm@14 141 printf("Error: D-Box needs matrix enabled with 8 channels.\n");
andrewm@14 142 return false;
andrewm@14 143 }
andrewm@14 144
andrewm@0 145 // Allocate two buffers for rendering oscillator bank samples
andrewm@0 146 // One will be used for writing in the background while the other is used for reading
andrewm@0 147 // on the audio thread. 8-byte alignment needed for the NEON code.
andrewm@14 148 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * gNumAudioChannels * sizeof(float))) {
andrewm@0 149 printf("Error allocating render buffers\n");
andrewm@0 150 return false;
andrewm@0 151 }
andrewm@14 152 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * gNumAudioChannels * sizeof(float))) {
andrewm@0 153 printf("Error allocating render buffers\n");
andrewm@0 154 return false;
andrewm@0 155 }
andrewm@0 156 gOscillatorBufferWrite = gOscillatorBuffer1;
andrewm@0 157 gOscillatorBufferRead = gOscillatorBuffer2;
andrewm@0 158
andrewm@14 159 memset(gOscillatorBuffer1, 0, oscBankHopSize * gNumAudioChannels * sizeof(float));
andrewm@14 160 memset(gOscillatorBuffer2, 0, oscBankHopSize * gNumAudioChannels * sizeof(float));
andrewm@0 161
andrewm@0 162 // Initialise the dynamic wavetable used by the oscillator bank
andrewm@0 163 // It should match the size of the static one already allocated in the OscillatorBank object
andrewm@0 164 // Don't forget a guard point at the end of the table
andrewm@0 165 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
andrewm@0 166 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
andrewm@0 167 printf("Error allocating wavetable\n");
andrewm@0 168 return false;
andrewm@0 169 }
andrewm@0 170
andrewm@0 171 gFeedbackOscillator.initialise(8192, 10.0, matrixSampleRate);
andrewm@0 172
andrewm@0 173 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
andrewm@0 174 gDynamicWavetable[n] = 0;
andrewm@0 175
andrewm@0 176 // pitch
andrewm@0 177 float midPos = (float)65535/2.0;
andrewm@0 178 octaveSplitter = round((float)65535/(N_OCT));
andrewm@0 179 int numOfSemi = 12*N_OCT;
andrewm@0 180 int middleSemitone = 12*N_OCT/2;
andrewm@0 181 int lastSemitone = middleSemitone+numOfSemi/2;
andrewm@0 182 float inc = (float)65535/(N_OCT*12.0);
andrewm@0 183 int i = -1;
andrewm@0 184 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
andrewm@0 185 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
andrewm@0 186 i = 0;
andrewm@0 187 for(int semi=middleSemitone-1; semi>=0; semi--)
andrewm@0 188 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
andrewm@0 189
andrewm@0 190 if(gAudioIn)
andrewm@0 191 audioInStatus = 1;
andrewm@0 192
andrewm@0 193 // filter
andrewm@0 194 blockSize = 2*gPeriodSize;
andrewm@0 195 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
andrewm@0 196 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
andrewm@0 197 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
andrewm@0 198 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
andrewm@0 199 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
andrewm@0 200 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
andrewm@0 201 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
andrewm@0 202 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
andrewm@0 203
andrewm@0 204 // peak outputs
andrewm@0 205 PeakBurst[0].setAttackRate(.00001 * matrixSampleRate);
andrewm@0 206 PeakBurst[1].setAttackRate(.00001 * matrixSampleRate);
andrewm@0 207 PeakBurst[0].setDecayRate(.5 * matrixSampleRate);
andrewm@0 208 PeakBurst[1].setDecayRate(.5 * matrixSampleRate);
andrewm@0 209 PeakBurst[0].setSustainLevel(0.0);
andrewm@0 210 PeakBurst[1].setSustainLevel(0.0);
andrewm@0 211
andrewm@0 212 // Initialise auxiliary tasks
andrewm@0 213 if((gMediumPriorityRender = createAuxiliaryTaskLoop(&render_medium_prio, 90, "dbox-calculation-medium")) == 0)
andrewm@0 214 return false;
andrewm@0 215 if((gLowPriorityRender = createAuxiliaryTaskLoop(&render_low_prio, 85, "dbox-calculation-low")) == 0)
andrewm@0 216 return false;
andrewm@0 217
andrewm@0 218 return true;
andrewm@0 219 }
andrewm@0 220
andrewm@0 221 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
andrewm@0 222 uint16_t *matrixIn, uint16_t *matrixOut)
andrewm@0 223 {
andrewm@0 224 #ifdef DBOX_CAPE_TEST
andrewm@0 225 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
andrewm@0 226 #else
andrewm@0 227 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
andrewm@0 228 gOscBanks[gCurrentOscBank]->resetOscillators();
andrewm@0 229
andrewm@0 230 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
andrewm@0 231 {
andrewm@14 232 assert(gNumAudioChannels == 2);
andrewm@0 233
andrewm@0 234 #ifdef OLD_OSCBANK
andrewm@14 235 memset(audioOut, 0, numAudioFrames * gNumAudioChannels * sizeof(float));
andrewm@0 236
andrewm@0 237 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
andrewm@0 238 * and it strips out all extra checks, so find out in advance whether we can render a whole
andrewm@0 239 * block or whether the frame will increment in the middle of this buffer.
andrewm@0 240 */
andrewm@0 241
andrewm@0 242 int framesRemaining = numAudioFrames;
andrewm@0 243 float *audioOutWithOffset = audioOut;
andrewm@0 244
andrewm@0 245 while(framesRemaining > 0) {
andrewm@0 246 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
andrewm@0 247 /* More frames left in this hop than we need this time. Render and finish */
andrewm@0 248 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
andrewm@0 249 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
andrewm@0 250 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
andrewm@0 251 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
andrewm@0 252 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
andrewm@0 253 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
andrewm@0 254 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
andrewm@0 255 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
andrewm@0 256 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
andrewm@0 257 gOscBanks[gCurrentOscBank]->nextHop();
andrewm@0 258 framesRemaining = 0;
andrewm@0 259 }
andrewm@0 260 else {
andrewm@0 261 /* More frames to render than are left in this hop. Render and decrement the
andrewm@0 262 * number of remaining frames; then advance to the next oscillator frame.
andrewm@0 263 */
andrewm@0 264 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
andrewm@0 265 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
andrewm@0 266 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
andrewm@0 267 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
andrewm@0 268 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
andrewm@0 269 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
andrewm@0 270 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
andrewm@0 271 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
andrewm@14 272 audioOutWithOffset += gNumAudioChannels * gOscBanks[gCurrentOscBank]->hopCounter;
andrewm@0 273 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
andrewm@0 274 gOscBanks[gCurrentOscBank]->nextHop();
andrewm@0 275 }
andrewm@0 276 }
andrewm@0 277 #else
andrewm@0 278 for(int n = 0; n < numAudioFrames; n++) {
andrewm@0 279 audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n]*audioInStatus;
andrewm@0 280 audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n+1]*audioInStatus;
andrewm@0 281
andrewm@0 282 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
andrewm@0 283 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
andrewm@0 284
andrewm@0 285 /* FIXME why doesn't this work? */
andrewm@0 286 /*
andrewm@0 287 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
andrewm@0 288 gOscillatorNeedsRender = true;
andrewm@0 289 scheduleAuxiliaryTask(gLowPriorityRender);
andrewm@0 290 } */
andrewm@0 291
andrewm@0 292 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
andrewm@0 293 // Finished reading from the buffer: swap to the next buffer
andrewm@0 294 if(gOscillatorBufferRead == gOscillatorBuffer1) {
andrewm@0 295 gOscillatorBufferRead = gOscillatorBuffer2;
andrewm@0 296 gOscillatorBufferWrite = gOscillatorBuffer1;
andrewm@0 297 }
andrewm@0 298 else {
andrewm@0 299 gOscillatorBufferRead = gOscillatorBuffer1;
andrewm@0 300 gOscillatorBufferWrite = gOscillatorBuffer2;
andrewm@0 301 }
andrewm@0 302
andrewm@0 303 // New buffer size is whatever finished writing last hop
andrewm@0 304 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
andrewm@0 305 gOscillatorBufferReadPointer = 0;
andrewm@0 306
andrewm@0 307 gOscillatorNeedsRender = true;
andrewm@0 308 scheduleAuxiliaryTask(gMediumPriorityRender);
andrewm@0 309 }
andrewm@0 310 }
andrewm@0 311 #endif
andrewm@0 312 }
andrewm@0 313 else
andrewm@0 314 {
andrewm@0 315 for(int n = 0; n < numAudioFrames; n++) {
andrewm@0 316 audioOut[2*n] = audioIn[2*n]*audioInStatus;
andrewm@0 317 audioOut[2*n + 1] = audioIn[2*n+1]*audioInStatus;
andrewm@0 318
andrewm@0 319 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
andrewm@0 320 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
andrewm@0 321 }
andrewm@0 322 }
andrewm@0 323
andrewm@0 324 // low pass filter audio in 1 and 2 for peak detection
andrewm@0 325 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
andrewm@0 326 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
andrewm@0 327
andrewm@0 328 for(int n = 0; n < numMatrixFrames; n++) {
andrewm@0 329
andrewm@0 330
andrewm@0 331 /* Matrix Out 0, In 0
andrewm@0 332 *
andrewm@0 333 * CV loop
andrewm@0 334 * Controls pitch of sound
andrewm@0 335 */
andrewm@0 336 int touchPosInt = gSensor0LatestTouchPos * 65536.0;
andrewm@0 337 if(touchPosInt < 0) touchPosInt = 0;
andrewm@0 338 if(touchPosInt > 65535) touchPosInt = 65535;
andrewm@0 339 matrixOut[n*8 + DAC_PIN0] = touchPosInt;
andrewm@0 340
andrewm@0 341 gPitchLatestInput = matrixIn[n*8 + ADC_PIN0];
andrewm@0 342
andrewm@0 343
andrewm@0 344 /* Matrix Out 7
andrewm@0 345 *
andrewm@0 346 * Loop feedback with Matrix In 0
andrewm@0 347 * Controls discreet pitch
andrewm@0 348 */
andrewm@0 349 float deltaTarget = 0;
andrewm@0 350 int semitoneIndex = 0;
andrewm@0 351 if(gSensor0LatestTouchNum>0)
andrewm@0 352 {
andrewm@0 353 // current pitch is gPitchLatestInput, already retrieved
andrewm@0 354 semitoneIndex = ( ( (float)gPitchLatestInput / 65535)*12*N_OCT )+0.5; // closest semitone
andrewm@0 355 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
andrewm@0 356 deltaTouch += deltaTarget*deltaWeightI; // update feedback [previous + current]
andrewm@0 357 }
andrewm@0 358 else
andrewm@0 359 deltaTouch = 0;
andrewm@0 360
andrewm@0 361 int nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
andrewm@0 362 if(nextOut < 0) nextOut = 0; // clamp
andrewm@0 363 if(nextOut > 65535) nextOut = 65535; // clamp
andrewm@0 364 matrixOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
andrewm@0 365
andrewm@0 366
andrewm@0 367 /*
andrewm@0 368 * Matrix Out 1, In 1
andrewm@0 369 *
andrewm@0 370 * Hysteresis (comparator) oscillator
andrewm@0 371 * Controls speed of playback
andrewm@0 372 */
andrewm@0 373 bool wasRising = gSpeedHysteresisOscillatorRising;
andrewm@0 374 matrixOut[n*8 + DAC_PIN1] = hysteresis_oscillator(matrixIn[n*8 + ADC_PIN1], 48000, 16000, &gSpeedHysteresisOscillatorRising);
andrewm@0 375
andrewm@0 376 // Find interval of zero crossing
andrewm@0 377 if(wasRising && !gSpeedHysteresisOscillatorRising) {
andrewm@0 378 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
andrewm@0 379
andrewm@0 380 // Interval since last trigger will be the new hop size; calculate to set speed
andrewm@0 381 if(interval < 1)
andrewm@0 382 interval = 1;
andrewm@0 383 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
andrewm@0 384 float speed = 144.0 / interval; // Normalise to a fixed expected speed
andrewm@0 385 gOscBanks[gCurrentOscBank]->setSpeed(speed);
andrewm@0 386
andrewm@0 387 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
andrewm@0 388 }
andrewm@0 389
andrewm@0 390 /*
andrewm@0 391 * Matrix Out 2, In 2
andrewm@0 392 *
andrewm@0 393 * Feedback (phase shift) oscillator
andrewm@0 394 * Controls wavetable used for oscillator bank
andrewm@0 395 */
andrewm@0 396
andrewm@0 397 int tableLength = gFeedbackOscillator.process(matrixIn[n*8 + ADC_PIN2], &matrixOut[n*8 + DAC_PIN2]);
andrewm@0 398 if(tableLength != 0) {
andrewm@0 399 gFeedbackOscillatorTableLength = tableLength;
andrewm@0 400 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
andrewm@0 401 gDynamicWavetableNeedsRender = true;
andrewm@0 402 scheduleAuxiliaryTask(gLowPriorityRender);
andrewm@0 403 }
andrewm@0 404
andrewm@0 405 /*
andrewm@0 406 * Matrix Out 3, In 3
andrewm@0 407 *
andrewm@0 408 * CV loop with delay for time alignment
andrewm@0 409 * Touch positions from sensor 1
andrewm@0 410 * Change every 32 samples (ca. 1.5 ms)
andrewm@0 411 */
andrewm@0 412 volatile int touchCount = gSensor1LatestTouchCount;
andrewm@0 413 if(touchCount == 0)
andrewm@0 414 matrixOut[n*8 + DAC_PIN3] = 0;
andrewm@0 415 else {
andrewm@0 416 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
andrewm@0 417 matrixOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f;
andrewm@0 418 if(touchIndex != gSensor1LastTouchIndex) {
andrewm@0 419 // Just changed to a new touch output. Reset the counter.
andrewm@0 420 // It will take 2*matrixFrames samples for this output to come back to the
andrewm@0 421 // ADC input. But we also want to read near the end of the 32 sample block;
andrewm@0 422 // let's say 24 samples into it.
andrewm@0 423
andrewm@0 424 // FIXME this won't work for p > 2
andrewm@0 425 gSensor1InputDelayCounter = 24 + 2*numMatrixFrames;
andrewm@0 426 gSensor1InputIndex = touchIndex;
andrewm@0 427 }
andrewm@0 428 gSensor1LastTouchIndex = touchIndex;
andrewm@0 429 }
andrewm@0 430
andrewm@0 431 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
andrewm@0 432 gSensor1MatrixTouchPos[gSensor1InputIndex] = (float)matrixIn[n*8 + ADC_PIN3] / 65536.0f;
andrewm@0 433 }
andrewm@0 434
andrewm@0 435 /* Matrix Out 4
andrewm@0 436 *
andrewm@0 437 * Sensor 1 last pos
andrewm@0 438 */
andrewm@0 439 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex] * 65536.0;
andrewm@0 440 if(touchPosInt < 0) touchPosInt = 0;
andrewm@0 441 if(touchPosInt > 65535) touchPosInt = 65535;
andrewm@0 442 matrixOut[n*8 + DAC_PIN4] = touchPosInt;
andrewm@0 443
andrewm@0 444 /* Matrix In 4
andrewm@0 445 *
andrewm@0 446 * Loop points selector
andrewm@0 447 */
andrewm@0 448 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = matrixIn[n*8 + ADC_PIN4];
andrewm@0 449 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
andrewm@0 450 // Find min and max values
andrewm@0 451 uint16_t loopMax = 0, loopMin = 65535;
andrewm@0 452 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
andrewm@0 453 if(gLoopPointsInputBuffer[i] < loopMin)
andrewm@0 454 loopMin = gLoopPointsInputBuffer[i];
andrewm@0 455 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
andrewm@0 456 loopMax = gLoopPointsInputBuffer[i];
andrewm@0 457 }
andrewm@0 458
andrewm@0 459 if(loopMin >= loopMax)
andrewm@0 460 loopMax = loopMin;
andrewm@0 461
andrewm@0 462 gLoopPointMax = loopMax;
andrewm@0 463 gLoopPointMin = loopMin;
andrewm@0 464 gLoopPointsInputBufferPointer = 0;
andrewm@0 465 }
andrewm@0 466
andrewm@0 467 /* Matrix Out 5
andrewm@0 468 *
andrewm@0 469 * Audio In 1 peak detection and peak burst output
andrewm@0 470 */
andrewm@0 471
andrewm@0 472 filterOut[0][n*2+1] *= filterGain;
andrewm@0 473 float burstOut = PeakBurst[0].getOutput();
andrewm@0 474 if( burstOut < 0.1)
andrewm@0 475 {
andrewm@0 476 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
andrewm@0 477 {
andrewm@0 478 peak[0] = prevFiltered[0];
andrewm@0 479 PeakBurst[0].gate(1);
andrewm@0 480 }
andrewm@0 481 }
andrewm@0 482
andrewm@0 483 PeakBurst[0].process(1);
andrewm@0 484
andrewm@0 485 int convAudio = burstOut*peak[0]*65535;
andrewm@0 486 matrixOut[n*8 + DAC_PIN5] = convAudio;
andrewm@0 487 prevFiltered[0] = filterOut[0][n*2+1];
andrewm@0 488 if(prevFiltered[0]>1)
andrewm@0 489 prevFiltered[0] = 1;
andrewm@0 490
andrewm@0 491 /* Matrix In 5
andrewm@0 492 *
andrewm@0 493 * Dissonance, via changing frequency motion of partials
andrewm@0 494 */
andrewm@0 495 float amount = (float)matrixIn[n*8 + ADC_PIN5] / 65536.0f;
andrewm@0 496 gOscBanks[gCurrentOscBank]->freqMovement = 1-amount;
andrewm@0 497
andrewm@0 498
andrewm@0 499
andrewm@0 500
andrewm@0 501 /* Matrix Out 6
andrewm@0 502 *
andrewm@0 503 * Audio In 2 peak detection and peak burst output
andrewm@0 504 */
andrewm@0 505
andrewm@0 506 filterOut[1][n*2+1] *= filterGain;
andrewm@0 507 burstOut = PeakBurst[1].getOutput();
andrewm@0 508 if( burstOut < 0.1)
andrewm@0 509 {
andrewm@0 510 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
andrewm@0 511 {
andrewm@0 512 peak[1] = prevFiltered[1];
andrewm@0 513 PeakBurst[1].gate(1);
andrewm@0 514 }
andrewm@0 515 }
andrewm@0 516
andrewm@0 517 PeakBurst[1].process(1);
andrewm@0 518
andrewm@0 519 convAudio = burstOut*peak[1]*65535;
andrewm@0 520 matrixOut[n*8 + DAC_PIN6] = convAudio;
andrewm@0 521 prevFiltered[1] = filterOut[1][n*2+1];
andrewm@0 522 if(prevFiltered[1]>1)
andrewm@0 523 prevFiltered[1] = 1;
andrewm@0 524
andrewm@0 525 /* Matrix In 6
andrewm@0 526 *
andrewm@0 527 * Sound selector
andrewm@0 528 */
andrewm@0 529 if(!gIsLoading) {
andrewm@0 530 // Use hysteresis to avoid jumping back and forth between sounds
andrewm@0 531 if(gOscBanks.size() > 1) {
andrewm@0 532 int input = matrixIn[n*8 + ADC_PIN6];
andrewm@0 533 const int hystValue = 16000;
andrewm@0 534
andrewm@0 535 int upHysteresisValue = ((gCurrentOscBank + 1) * 65536 + hystValue) / gOscBanks.size();
andrewm@0 536 int downHysteresisValue = (gCurrentOscBank * 65536 - hystValue) / gOscBanks.size();
andrewm@0 537
andrewm@0 538 if(input > upHysteresisValue || input < downHysteresisValue) {
andrewm@0 539 gNextOscBank = input * gOscBanks.size() / 65536;
andrewm@0 540 if(gNextOscBank < 0)
andrewm@0 541 gNextOscBank = 0;
andrewm@0 542 if((unsigned)gNextOscBank >= gOscBanks.size())
andrewm@0 543 gNextOscBank = gOscBanks.size() - 1;
andrewm@0 544 }
andrewm@0 545 }
andrewm@0 546 }
andrewm@0 547
andrewm@0 548 /*
andrewm@0 549 * Matrix In 7
andrewm@0 550 *
andrewm@0 551 * FSR from primary touch sensor
andrewm@0 552 * Value ranges from 0-1799
andrewm@0 553 */
andrewm@0 554 gLastFSRValue = matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
andrewm@0 555 //gLastFSRValue = 1799 - matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
andrewm@0 556 //dbox_printf("%i\n",gLastFSRValue);
andrewm@0 557
andrewm@0 558 gMatrixSampleCount++;
andrewm@0 559 }
andrewm@0 560
andrewm@0 561 #endif /* DBOX_CAPE_TEST */
andrewm@0 562 }
andrewm@0 563
andrewm@0 564 // Medium-priority render function used for audio hop calculations
andrewm@0 565 void render_medium_prio()
andrewm@0 566 {
andrewm@0 567
andrewm@0 568 if(gOscillatorNeedsRender) {
andrewm@0 569 gOscillatorNeedsRender = false;
andrewm@0 570
andrewm@0 571 /* Render one frame into the write buffer */
andrewm@14 572 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * gNumAudioChannels * sizeof(float));
andrewm@0 573
andrewm@0 574 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
andrewm@0 575 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
andrewm@0 576 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
andrewm@0 577 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
andrewm@0 578 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
andrewm@0 579 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
andrewm@0 580 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
andrewm@0 581
andrewm@14 582 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * gNumAudioChannels;
andrewm@0 583
andrewm@0 584 /* Update the pitch right before the hop
andrewm@0 585 * Total CV range +/- N_OCT octaves
andrewm@0 586 */
andrewm@0 587 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
andrewm@0 588 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
andrewm@0 589 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
andrewm@0 590
andrewm@0 591 #ifdef FIXME_LATER // This doesn't work very well yet
andrewm@0 592 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
andrewm@0 593 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
andrewm@0 594 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
andrewm@0 595 {
andrewm@0 596 // touch pos is linear but freqs are log
andrewm@0 597 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
andrewm@0 598 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
andrewm@0 599 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
andrewm@0 600 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
andrewm@0 601 else
andrewm@0 602 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
andrewm@0 603 }
andrewm@0 604 #endif
andrewm@0 605
andrewm@0 606 RTIME ticks = rt_timer_read();
andrewm@0 607 SRTIME ns = rt_timer_tsc2ns(ticks);
andrewm@0 608 SRTIME delta = ns-prevChangeNs;
andrewm@0 609
andrewm@0 610 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
andrewm@0 611 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
andrewm@0 612
andrewm@0 613 /*printf("ticks %llu\n", (unsigned long long)ticks);
andrewm@0 614 printf("ns %llu\n", (unsigned long long)ns);
andrewm@0 615 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
andrewm@0 616 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
andrewm@0 617
andrewm@0 618 prevChangeNs = ns;
andrewm@0 619 dbox_printf("Changing to bank %d...\n", gNextOscBank);
andrewm@0 620 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
andrewm@0 621 gOscBanks[gCurrentOscBank]->stop();
andrewm@0 622 }
andrewm@0 623
andrewm@0 624 gCurrentOscBank = gNextOscBank;
andrewm@0 625 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
andrewm@0 626 }
andrewm@0 627 else {
andrewm@0 628 /* Advance to the next oscillator frame */
andrewm@0 629 gOscBanks[gCurrentOscBank]->nextHop();
andrewm@0 630 }
andrewm@0 631 }
andrewm@0 632 }
andrewm@0 633
andrewm@0 634 // Lower-priority render function which performs matrix calculations
andrewm@0 635 // State should be transferred in via global variables
andrewm@0 636 void render_low_prio()
andrewm@0 637 {
andrewm@0 638 gPRU->setGPIOTestPin();
andrewm@0 639 if(gDynamicWavetableNeedsRender) {
andrewm@0 640 // Find amplitude of wavetable
andrewm@0 641 float meanAmplitude = 0;
andrewm@0 642 float sineMix;
andrewm@0 643
andrewm@0 644 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
andrewm@0 645 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
andrewm@0 646 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
andrewm@0 647 }
andrewm@0 648 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
andrewm@0 649
andrewm@0 650 if(meanAmplitude > 0.35)
andrewm@0 651 sineMix = 0;
andrewm@0 652 else
andrewm@0 653 sineMix = (.35 - meanAmplitude) / .35;
andrewm@0 654
andrewm@0 655 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
andrewm@0 656
andrewm@0 657 // Copy to main wavetable
andrewm@0 658 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
andrewm@0 659 gFeedbackOscillatorTable, gDynamicWavetable,
andrewm@0 660 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
andrewm@0 661 }
andrewm@0 662
andrewm@0 663 if(gLoopPointMin >= 60000 && gLoopPointMax >= 60000) {
andrewm@0 664 // KLUDGE!
andrewm@0 665 if(gCurrentOscBank == 0)
andrewm@0 666 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
andrewm@0 667 else
andrewm@0 668 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
andrewm@0 669 }
andrewm@0 670 else {
andrewm@0 671 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
andrewm@0 672 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
andrewm@0 673
andrewm@0 674 int intLoopPointMin = normLoopPointMin;
andrewm@0 675 if(intLoopPointMin < 1)
andrewm@0 676 intLoopPointMin = 1;
andrewm@0 677 int intLoopPointMax = normLoopPointMax;
andrewm@0 678 if(intLoopPointMax <= intLoopPointMin)
andrewm@0 679 intLoopPointMax = intLoopPointMin + 1;
andrewm@0 680 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
andrewm@0 681 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
andrewm@0 682
andrewm@0 683 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
andrewm@0 684
andrewm@0 685 /* WORKS, jsut need to fix the glitch when jumps!
andrewm@0 686 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
andrewm@0 687 if(currentHop < intLoopPointMin -1 )
andrewm@0 688 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
andrewm@0 689 else if(currentHop > intLoopPointMax + 1)
andrewm@0 690 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
andrewm@0 691 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
andrewm@0 692 }
andrewm@0 693
andrewm@0 694 if(gIsLoading)
andrewm@0 695 gStatusLED.blink(25, 75); // Blink quickly until load finished
andrewm@0 696 else
andrewm@0 697 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
andrewm@0 698 gPRU->clearGPIOTestPin();
andrewm@0 699
andrewm@0 700 // static int counter = 32;
andrewm@0 701 // if(--counter == 0) {
andrewm@0 702 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
andrewm@0 703 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
andrewm@0 704 // if(i % 32 == 31)
andrewm@0 705 // dbox_printf("\n");
andrewm@0 706 // }
andrewm@0 707 // dbox_printf("\n\n");
andrewm@0 708 // counter = 32;
andrewm@0 709 // }
andrewm@0 710
andrewm@0 711 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
andrewm@0 712 }
andrewm@0 713
andrewm@0 714 // Clean up at the end of render
andrewm@0 715 void cleanup_render()
andrewm@0 716 {
andrewm@0 717 free(gOscillatorBuffer1);
andrewm@0 718 free(gOscillatorBuffer2);
andrewm@0 719 free(gDynamicWavetable);
andrewm@0 720 }
andrewm@0 721
andrewm@0 722 // Interpolate one wavetable into another. The output size
andrewm@0 723 // does not include the guard point at the end which will be identical
andrewm@0 724 // to the first point
andrewm@0 725 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
andrewm@0 726 float *tableIn, float *tableOut,
andrewm@0 727 float *sineTable, float sineMix)
andrewm@0 728 {
andrewm@0 729 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
andrewm@0 730
andrewm@0 731 for(int k = 0; k < numSamplesOut; k++) {
andrewm@0 732 float fractionalIndex = (float) k * fractionalScaler;
andrewm@0 733 //int sB = (int)floorf(fractionalIndex);
andrewm@0 734 int sB = (int)floor(fractionalIndex);
andrewm@0 735 int sA = sB + 1;
andrewm@0 736 if(sA >= numSamplesIn)
andrewm@0 737 sA = 0;
andrewm@0 738 float fraction = fractionalIndex - sB;
andrewm@0 739 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
andrewm@0 740 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
andrewm@0 741 }
andrewm@0 742
andrewm@0 743 tableOut[numSamplesOut] = tableOut[0];
andrewm@0 744 }
andrewm@0 745
andrewm@0 746 // Create a hysteresis oscillator with a matrix input and output
andrewm@0 747 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold, uint16_t fallingThreshold, bool *rising)
andrewm@0 748 {
andrewm@0 749 uint16_t value;
andrewm@0 750
andrewm@0 751 if(*rising) {
andrewm@0 752 if(input > risingThreshold) {
andrewm@0 753 *rising = false;
andrewm@0 754 value = 0;
andrewm@0 755 }
andrewm@0 756 else
andrewm@0 757 value = 65535;
andrewm@0 758 }
andrewm@0 759 else {
andrewm@0 760 if(input < fallingThreshold) {
andrewm@0 761 *rising = true;
andrewm@0 762 value = 65535;
andrewm@0 763 }
andrewm@0 764 else
andrewm@0 765 value = 0;
andrewm@0 766 }
andrewm@0 767
andrewm@0 768 return value;
andrewm@0 769 }
andrewm@0 770
andrewm@0 771 #ifdef DBOX_CAPE_TEST
andrewm@0 772 // Test the functionality of the D-Box cape by checking each input and output
andrewm@0 773 // Loopback cable from ADC to DAC needed
andrewm@0 774 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
andrewm@0 775 uint16_t *matrixIn, uint16_t *matrixOut)
andrewm@0 776 {
andrewm@0 777 static float phase = 0.0;
andrewm@0 778 static int sampleCounter = 0;
andrewm@0 779 static int invertChannel = 0;
andrewm@0 780
andrewm@0 781 // Play a sine wave on the audio output
andrewm@0 782 for(int n = 0; n < numAudioFrames; n++) {
andrewm@0 783 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
andrewm@0 784 phase += 2.0 * M_PI * 440.0 / 44100.0;
andrewm@0 785 if(phase >= 2.0 * M_PI)
andrewm@0 786 phase -= 2.0 * M_PI;
andrewm@0 787 }
andrewm@0 788
andrewm@0 789 for(int n = 0; n < numMatrixFrames; n++) {
andrewm@0 790 // Change outputs every 512 samples
andrewm@0 791 if(sampleCounter < 512) {
andrewm@0 792 for(int k = 0; k < 8; k++) {
andrewm@0 793 if(k == invertChannel)
andrewm@0 794 matrixOut[n*8 + k] = 50000;
andrewm@0 795 else
andrewm@0 796 matrixOut[n*8 + k] = 0;
andrewm@0 797 }
andrewm@0 798 }
andrewm@0 799 else {
andrewm@0 800 for(int k = 0; k < 8; k++) {
andrewm@0 801 if(k == invertChannel)
andrewm@0 802 matrixOut[n*8 + k] = 0;
andrewm@0 803 else
andrewm@0 804 matrixOut[n*8 + k] = 50000;
andrewm@0 805 }
andrewm@0 806 }
andrewm@0 807
andrewm@0 808 // Read after 256 samples: input should be low
andrewm@0 809 if(sampleCounter == 256) {
andrewm@0 810 for(int k = 0; k < 8; k++) {
andrewm@0 811 if(k == invertChannel) {
andrewm@0 812 if(matrixIn[n*8 + k] < 50000) {
andrewm@0 813 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
andrewm@0 814 }
andrewm@0 815 }
andrewm@0 816 else {
andrewm@0 817 if(matrixIn[n*8 + k] > 2048) {
andrewm@0 818 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
andrewm@0 819 }
andrewm@0 820 }
andrewm@0 821 }
andrewm@0 822 }
andrewm@0 823 else if(sampleCounter == 768) {
andrewm@0 824 for(int k = 0; k < 8; k++) {
andrewm@0 825 if(k == invertChannel) {
andrewm@0 826 if(matrixIn[n*8 + k] > 2048) {
andrewm@0 827 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
andrewm@0 828 }
andrewm@0 829 }
andrewm@0 830 else {
andrewm@0 831 if(matrixIn[n*8 + k] < 50000) {
andrewm@0 832 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
andrewm@0 833 }
andrewm@0 834 }
andrewm@0 835 }
andrewm@0 836 }
andrewm@0 837
andrewm@0 838 if(++sampleCounter >= 1024) {
andrewm@0 839 sampleCounter = 0;
andrewm@0 840 invertChannel++;
andrewm@0 841 if(invertChannel >= 8)
andrewm@0 842 invertChannel = 0;
andrewm@0 843 }
andrewm@0 844 }
andrewm@0 845 }
andrewm@0 846 #endif
andrewm@0 847
andrewm@0 848