andrewm@0
|
1 /*
|
andrewm@0
|
2 * render.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Created on: May 28, 2014
|
andrewm@0
|
5 * Author: Victor Zappi
|
andrewm@0
|
6 */
|
andrewm@0
|
7
|
andrewm@0
|
8 #include "../../include/RTAudio.h"
|
andrewm@0
|
9 #include "../../include/PRU.h"
|
andrewm@0
|
10 #include "StatusLED.h"
|
andrewm@0
|
11 #include "config.h"
|
andrewm@0
|
12 #include "OscillatorBank.h"
|
andrewm@0
|
13 #include "FeedbackOscillator.h"
|
andrewm@0
|
14 #include "ADSR.h"
|
andrewm@0
|
15 #include "FIRfilter.h"
|
andrewm@0
|
16 #include <assert.h>
|
andrewm@0
|
17 #include <cmath>
|
andrewm@0
|
18 #include <vector>
|
andrewm@0
|
19
|
andrewm@0
|
20 #undef DBOX_CAPE_TEST
|
andrewm@0
|
21
|
andrewm@0
|
22 #define N_OCT 4.0 // maximum number of octaves on sensor 1
|
andrewm@0
|
23
|
andrewm@0
|
24 extern vector<OscillatorBank*> gOscBanks;
|
andrewm@0
|
25 extern int gCurrentOscBank;
|
andrewm@0
|
26 extern int gNextOscBank;
|
andrewm@0
|
27 extern PRU *gPRU;
|
andrewm@0
|
28 extern StatusLED gStatusLED;
|
andrewm@0
|
29 extern bool gIsLoading;
|
andrewm@0
|
30 extern bool gAudioIn;
|
andrewm@0
|
31 extern int gPeriodSize;
|
andrewm@0
|
32 int gChannels = 2;
|
andrewm@0
|
33
|
andrewm@0
|
34 float *gOscillatorBuffer1, *gOscillatorBuffer2;
|
andrewm@0
|
35 float *gOscillatorBufferRead, *gOscillatorBufferWrite;
|
andrewm@0
|
36 int gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
37 int gOscillatorBufferReadCurrentSize = 0;
|
andrewm@0
|
38 int gOscillatorBufferWriteCurrentSize = 0;
|
andrewm@0
|
39 bool gOscillatorNeedsRender = false;
|
andrewm@0
|
40
|
andrewm@0
|
41 int gMatrixSampleCount = 0; // How many samples have elapsed on the matrix
|
andrewm@0
|
42
|
andrewm@0
|
43 // Wavetable which changes in response to an oscillator
|
andrewm@0
|
44 float *gDynamicWavetable;
|
andrewm@0
|
45 int gDynamicWavetableLength;
|
andrewm@0
|
46 bool gDynamicWavetableNeedsRender = false;
|
andrewm@0
|
47
|
andrewm@0
|
48 // These variables handle the hysteresis oscillator used for setting the playback speed
|
andrewm@0
|
49 bool gSpeedHysteresisOscillatorRising = false;
|
andrewm@0
|
50 int gSpeedHysteresisLastTrigger = 0;
|
andrewm@0
|
51
|
andrewm@0
|
52 // These variables handle the feedback oscillator used for controlling the wavetable
|
andrewm@0
|
53 FeedbackOscillator gFeedbackOscillator;
|
andrewm@0
|
54 float *gFeedbackOscillatorTable;
|
andrewm@0
|
55 int gFeedbackOscillatorTableLength;
|
andrewm@0
|
56
|
andrewm@0
|
57 // This comes from sensor.cpp where it records the most recent touch location on
|
andrewm@0
|
58 // sensor 0.
|
andrewm@0
|
59 extern float gSensor0LatestTouchPos;
|
andrewm@0
|
60 extern int gSensor0LatestTouchNum;
|
andrewm@0
|
61 uint16_t gPitchLatestInput = 0;
|
andrewm@0
|
62
|
andrewm@0
|
63 extern float gSensor1LatestTouchPos[];
|
andrewm@0
|
64 //extern float gSensor1LatestTouchSizes[];
|
andrewm@0
|
65 extern int gSensor1LatestTouchCount;
|
andrewm@0
|
66 extern int gSensor1LatestTouchIndex;
|
andrewm@0
|
67 int gSensor1LastTouchIndex = -1;
|
andrewm@0
|
68 int gSensor1InputDelayCounter = -1;
|
andrewm@0
|
69 int gSensor1InputIndex = 0;
|
andrewm@0
|
70 float gSensor1MatrixTouchPos[5] = {0};
|
andrewm@0
|
71
|
andrewm@0
|
72 // FSR value from matrix input
|
andrewm@0
|
73 extern int gLastFSRValue;
|
andrewm@0
|
74
|
andrewm@0
|
75 // Loop points from matrix input 4
|
andrewm@0
|
76 const int gLoopPointsInputBufferSize = 256;
|
andrewm@0
|
77 uint16_t gLoopPointsInputBuffer[gLoopPointsInputBufferSize];
|
andrewm@0
|
78 int gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
79 int gLoopPointMin = 0, gLoopPointMax = 0;
|
andrewm@0
|
80
|
andrewm@0
|
81 // multiplier to activate or mute audio in
|
andrewm@0
|
82 int audioInStatus = 0;
|
andrewm@0
|
83
|
andrewm@0
|
84 // xenomai timer
|
andrewm@0
|
85 SRTIME prevChangeNs = 0;
|
andrewm@0
|
86
|
andrewm@0
|
87 // pitch vars
|
andrewm@0
|
88 float octaveSplitter;
|
andrewm@0
|
89 u_int16_t semitones[((int)N_OCT*12)+1];
|
andrewm@0
|
90 float deltaTouch = 0;
|
andrewm@0
|
91 float deltaWeightP = 0.5;
|
andrewm@0
|
92 float deltaWeightI = 0.0005;
|
andrewm@0
|
93
|
andrewm@0
|
94 // filter vars
|
andrewm@0
|
95 ne10_fir_instance_f32_t filter[2];
|
andrewm@0
|
96 ne10_float32_t *filterIn[2];
|
andrewm@0
|
97 ne10_float32_t *filterOut[2];
|
andrewm@0
|
98 ne10_uint32_t blockSize;
|
andrewm@0
|
99 ne10_float32_t *filterState[2];
|
andrewm@0
|
100 ne10_float32_t prevFiltered[2];
|
andrewm@0
|
101 int filterGain = 80;
|
andrewm@0
|
102 ADSR PeakBurst[2];
|
andrewm@0
|
103 float peak[2];
|
andrewm@0
|
104 float peakThresh = 0.2;
|
andrewm@0
|
105
|
andrewm@0
|
106 // Tasks for lower-priority calculation
|
andrewm@0
|
107 AuxiliaryTask gMediumPriorityRender, gLowPriorityRender;
|
andrewm@0
|
108
|
andrewm@0
|
109
|
andrewm@0
|
110 extern "C" {
|
andrewm@0
|
111 // Function prototype for ARM assembly implementation of oscillator bank
|
andrewm@0
|
112 void oscillator_bank_neon(int numAudioFrames, float *audioOut,
|
andrewm@0
|
113 int activePartialNum, int lookupTableSize,
|
andrewm@0
|
114 float *phases, float *frequencies, float *amplitudes,
|
andrewm@0
|
115 float *freqDerivatives, float *ampDerivatives,
|
andrewm@0
|
116 float *lookupTable);
|
andrewm@0
|
117
|
andrewm@0
|
118 void wavetable_interpolate_neon(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
119 float *tableIn, float *tableOut);
|
andrewm@0
|
120 }
|
andrewm@0
|
121
|
andrewm@0
|
122 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
123 float *tableIn, float *tableOut,
|
andrewm@0
|
124 float *sineTable, float sineMix);
|
andrewm@0
|
125
|
andrewm@0
|
126 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold,
|
andrewm@0
|
127 uint16_t fallingThreshold, bool *rising);
|
andrewm@0
|
128
|
andrewm@0
|
129 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
130 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
131 uint16_t *matrixIn, uint16_t *matrixOut);
|
andrewm@0
|
132 #endif
|
andrewm@0
|
133
|
andrewm@0
|
134 bool initialise_render(int numChannels, int numMatrixFramesPerPeriod, int numAudioFramesPerPeriod, float matrixSampleRate, float audioSampleRate, void *userData) {
|
andrewm@0
|
135 gChannels = numChannels;
|
andrewm@0
|
136 int oscBankHopSize = *(int *)userData;
|
andrewm@0
|
137
|
andrewm@0
|
138 // Allocate two buffers for rendering oscillator bank samples
|
andrewm@0
|
139 // One will be used for writing in the background while the other is used for reading
|
andrewm@0
|
140 // on the audio thread. 8-byte alignment needed for the NEON code.
|
andrewm@0
|
141 if(posix_memalign((void **)&gOscillatorBuffer1, 8, oscBankHopSize * gChannels * sizeof(float))) {
|
andrewm@0
|
142 printf("Error allocating render buffers\n");
|
andrewm@0
|
143 return false;
|
andrewm@0
|
144 }
|
andrewm@0
|
145 if(posix_memalign((void **)&gOscillatorBuffer2, 8, oscBankHopSize * gChannels * sizeof(float))) {
|
andrewm@0
|
146 printf("Error allocating render buffers\n");
|
andrewm@0
|
147 return false;
|
andrewm@0
|
148 }
|
andrewm@0
|
149 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
150 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
151
|
andrewm@0
|
152 memset(gOscillatorBuffer1, 0, oscBankHopSize * gChannels * sizeof(float));
|
andrewm@0
|
153 memset(gOscillatorBuffer2, 0, oscBankHopSize * gChannels * sizeof(float));
|
andrewm@0
|
154
|
andrewm@0
|
155 // Initialise the dynamic wavetable used by the oscillator bank
|
andrewm@0
|
156 // It should match the size of the static one already allocated in the OscillatorBank object
|
andrewm@0
|
157 // Don't forget a guard point at the end of the table
|
andrewm@0
|
158 gDynamicWavetableLength = gOscBanks[gCurrentOscBank]->lookupTableSize;
|
andrewm@0
|
159 if(posix_memalign((void **)&gDynamicWavetable, 8, (gDynamicWavetableLength + 1) * sizeof(float))) {
|
andrewm@0
|
160 printf("Error allocating wavetable\n");
|
andrewm@0
|
161 return false;
|
andrewm@0
|
162 }
|
andrewm@0
|
163
|
andrewm@0
|
164 gFeedbackOscillator.initialise(8192, 10.0, matrixSampleRate);
|
andrewm@0
|
165
|
andrewm@0
|
166 for(int n = 0; n < gDynamicWavetableLength + 1; n++)
|
andrewm@0
|
167 gDynamicWavetable[n] = 0;
|
andrewm@0
|
168
|
andrewm@0
|
169 // pitch
|
andrewm@0
|
170 float midPos = (float)65535/2.0;
|
andrewm@0
|
171 octaveSplitter = round((float)65535/(N_OCT));
|
andrewm@0
|
172 int numOfSemi = 12*N_OCT;
|
andrewm@0
|
173 int middleSemitone = 12*N_OCT/2;
|
andrewm@0
|
174 int lastSemitone = middleSemitone+numOfSemi/2;
|
andrewm@0
|
175 float inc = (float)65535/(N_OCT*12.0);
|
andrewm@0
|
176 int i = -1;
|
andrewm@0
|
177 for(int semi=middleSemitone; semi<=lastSemitone; semi++)
|
andrewm@0
|
178 semitones[semi] = ( midPos + (++i)*inc) + 0.5;
|
andrewm@0
|
179 i = 0;
|
andrewm@0
|
180 for(int semi=middleSemitone-1; semi>=0; semi--)
|
andrewm@0
|
181 semitones[semi] = ( midPos - (++i)*inc) + 0.5;
|
andrewm@0
|
182
|
andrewm@0
|
183 if(gAudioIn)
|
andrewm@0
|
184 audioInStatus = 1;
|
andrewm@0
|
185
|
andrewm@0
|
186 // filter
|
andrewm@0
|
187 blockSize = 2*gPeriodSize;
|
andrewm@0
|
188 filterState[0] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
189 filterState[1] = (ne10_float32_t *) NE10_MALLOC ((FILTER_TAP_NUM+blockSize-1) * sizeof (ne10_float32_t));
|
andrewm@0
|
190 filterIn[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
191 filterIn[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
192 filterOut[0] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
193 filterOut[1] = (ne10_float32_t *) NE10_MALLOC (blockSize * sizeof (ne10_float32_t));
|
andrewm@0
|
194 ne10_fir_init_float(&filter[0], FILTER_TAP_NUM, filterTaps, filterState[0], blockSize);
|
andrewm@0
|
195 ne10_fir_init_float(&filter[1], FILTER_TAP_NUM, filterTaps, filterState[1], blockSize);
|
andrewm@0
|
196
|
andrewm@0
|
197 // peak outputs
|
andrewm@0
|
198 PeakBurst[0].setAttackRate(.00001 * matrixSampleRate);
|
andrewm@0
|
199 PeakBurst[1].setAttackRate(.00001 * matrixSampleRate);
|
andrewm@0
|
200 PeakBurst[0].setDecayRate(.5 * matrixSampleRate);
|
andrewm@0
|
201 PeakBurst[1].setDecayRate(.5 * matrixSampleRate);
|
andrewm@0
|
202 PeakBurst[0].setSustainLevel(0.0);
|
andrewm@0
|
203 PeakBurst[1].setSustainLevel(0.0);
|
andrewm@0
|
204
|
andrewm@0
|
205 // Initialise auxiliary tasks
|
andrewm@0
|
206 if((gMediumPriorityRender = createAuxiliaryTaskLoop(&render_medium_prio, 90, "dbox-calculation-medium")) == 0)
|
andrewm@0
|
207 return false;
|
andrewm@0
|
208 if((gLowPriorityRender = createAuxiliaryTaskLoop(&render_low_prio, 85, "dbox-calculation-low")) == 0)
|
andrewm@0
|
209 return false;
|
andrewm@0
|
210
|
andrewm@0
|
211 return true;
|
andrewm@0
|
212 }
|
andrewm@0
|
213
|
andrewm@0
|
214 void render(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
215 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
216 {
|
andrewm@0
|
217 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
218 render_capetest(numMatrixFrames, numAudioFrames, audioIn, audioOut, matrixIn, matrixOut);
|
andrewm@0
|
219 #else
|
andrewm@0
|
220 if(gOscBanks[gCurrentOscBank]->state==bank_toreset)
|
andrewm@0
|
221 gOscBanks[gCurrentOscBank]->resetOscillators();
|
andrewm@0
|
222
|
andrewm@0
|
223 if(gOscBanks[gCurrentOscBank]->state==bank_playing)
|
andrewm@0
|
224 {
|
andrewm@0
|
225 assert(gChannels == 2);
|
andrewm@0
|
226
|
andrewm@0
|
227 #ifdef OLD_OSCBANK
|
andrewm@0
|
228 memset(audioOut, 0, numAudioFrames * gChannels * sizeof(float));
|
andrewm@0
|
229
|
andrewm@0
|
230 /* Render the oscillator bank. The oscillator bank function is written in NEON assembly
|
andrewm@0
|
231 * and it strips out all extra checks, so find out in advance whether we can render a whole
|
andrewm@0
|
232 * block or whether the frame will increment in the middle of this buffer.
|
andrewm@0
|
233 */
|
andrewm@0
|
234
|
andrewm@0
|
235 int framesRemaining = numAudioFrames;
|
andrewm@0
|
236 float *audioOutWithOffset = audioOut;
|
andrewm@0
|
237
|
andrewm@0
|
238 while(framesRemaining > 0) {
|
andrewm@0
|
239 if(gOscBanks[gCurrentOscBank]->hopCounter >= framesRemaining) {
|
andrewm@0
|
240 /* More frames left in this hop than we need this time. Render and finish */
|
andrewm@0
|
241 oscillator_bank_neon(framesRemaining, audioOutWithOffset,
|
andrewm@0
|
242 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
243 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
244 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
245 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
246 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
247 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
248 gOscBanks[gCurrentOscBank]->hopCounter -= framesRemaining;
|
andrewm@0
|
249 if(gOscBanks[gCurrentOscBank]->hopCounter <= 0)
|
andrewm@0
|
250 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
251 framesRemaining = 0;
|
andrewm@0
|
252 }
|
andrewm@0
|
253 else {
|
andrewm@0
|
254 /* More frames to render than are left in this hop. Render and decrement the
|
andrewm@0
|
255 * number of remaining frames; then advance to the next oscillator frame.
|
andrewm@0
|
256 */
|
andrewm@0
|
257 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, audioOutWithOffset,
|
andrewm@0
|
258 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
259 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
260 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
261 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
262 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
263 gDynamicWavetable/*gOscBanks[gCurrentOscBank]->lookupTable*/);
|
andrewm@0
|
264 framesRemaining -= gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
265 audioOutWithOffset += gChannels * gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
266 gOscBanks[gCurrentOscBank]->sampleCount += gOscBanks[gCurrentOscBank]->hopCounter;
|
andrewm@0
|
267 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
268 }
|
andrewm@0
|
269 }
|
andrewm@0
|
270 #else
|
andrewm@0
|
271 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
272 audioOut[2*n] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n]*audioInStatus;
|
andrewm@0
|
273 audioOut[2*n + 1] = gOscillatorBufferRead[gOscillatorBufferReadPointer++]+audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
274
|
andrewm@0
|
275 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@0
|
276 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
277
|
andrewm@0
|
278 /* FIXME why doesn't this work? */
|
andrewm@0
|
279 /*
|
andrewm@0
|
280 if(gOscillatorBufferReadPointer == gOscillatorBufferCurrentSize/2) {
|
andrewm@0
|
281 gOscillatorNeedsRender = true;
|
andrewm@0
|
282 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
283 } */
|
andrewm@0
|
284
|
andrewm@0
|
285 if(gOscillatorBufferReadPointer >= gOscillatorBufferReadCurrentSize) {
|
andrewm@0
|
286 // Finished reading from the buffer: swap to the next buffer
|
andrewm@0
|
287 if(gOscillatorBufferRead == gOscillatorBuffer1) {
|
andrewm@0
|
288 gOscillatorBufferRead = gOscillatorBuffer2;
|
andrewm@0
|
289 gOscillatorBufferWrite = gOscillatorBuffer1;
|
andrewm@0
|
290 }
|
andrewm@0
|
291 else {
|
andrewm@0
|
292 gOscillatorBufferRead = gOscillatorBuffer1;
|
andrewm@0
|
293 gOscillatorBufferWrite = gOscillatorBuffer2;
|
andrewm@0
|
294 }
|
andrewm@0
|
295
|
andrewm@0
|
296 // New buffer size is whatever finished writing last hop
|
andrewm@0
|
297 gOscillatorBufferReadCurrentSize = gOscillatorBufferWriteCurrentSize;
|
andrewm@0
|
298 gOscillatorBufferReadPointer = 0;
|
andrewm@0
|
299
|
andrewm@0
|
300 gOscillatorNeedsRender = true;
|
andrewm@0
|
301 scheduleAuxiliaryTask(gMediumPriorityRender);
|
andrewm@0
|
302 }
|
andrewm@0
|
303 }
|
andrewm@0
|
304 #endif
|
andrewm@0
|
305 }
|
andrewm@0
|
306 else
|
andrewm@0
|
307 {
|
andrewm@0
|
308 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
309 audioOut[2*n] = audioIn[2*n]*audioInStatus;
|
andrewm@0
|
310 audioOut[2*n + 1] = audioIn[2*n+1]*audioInStatus;
|
andrewm@0
|
311
|
andrewm@0
|
312 filterIn[0][n] = fabs(audioIn[2*n]); // rectify for peak detection in 1
|
andrewm@0
|
313 filterIn[1][n] = fabs(audioIn[2*n+1]); // rectify for peak detection in 2
|
andrewm@0
|
314 }
|
andrewm@0
|
315 }
|
andrewm@0
|
316
|
andrewm@0
|
317 // low pass filter audio in 1 and 2 for peak detection
|
andrewm@0
|
318 ne10_fir_float_neon(&filter[0], filterIn[0], filterOut[0], blockSize);
|
andrewm@0
|
319 ne10_fir_float_neon(&filter[1], filterIn[1], filterOut[1], blockSize);
|
andrewm@0
|
320
|
andrewm@0
|
321 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
322
|
andrewm@0
|
323
|
andrewm@0
|
324 /* Matrix Out 0, In 0
|
andrewm@0
|
325 *
|
andrewm@0
|
326 * CV loop
|
andrewm@0
|
327 * Controls pitch of sound
|
andrewm@0
|
328 */
|
andrewm@0
|
329 int touchPosInt = gSensor0LatestTouchPos * 65536.0;
|
andrewm@0
|
330 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@0
|
331 if(touchPosInt > 65535) touchPosInt = 65535;
|
andrewm@0
|
332 matrixOut[n*8 + DAC_PIN0] = touchPosInt;
|
andrewm@0
|
333
|
andrewm@0
|
334 gPitchLatestInput = matrixIn[n*8 + ADC_PIN0];
|
andrewm@0
|
335
|
andrewm@0
|
336
|
andrewm@0
|
337 /* Matrix Out 7
|
andrewm@0
|
338 *
|
andrewm@0
|
339 * Loop feedback with Matrix In 0
|
andrewm@0
|
340 * Controls discreet pitch
|
andrewm@0
|
341 */
|
andrewm@0
|
342 float deltaTarget = 0;
|
andrewm@0
|
343 int semitoneIndex = 0;
|
andrewm@0
|
344 if(gSensor0LatestTouchNum>0)
|
andrewm@0
|
345 {
|
andrewm@0
|
346 // current pitch is gPitchLatestInput, already retrieved
|
andrewm@0
|
347 semitoneIndex = ( ( (float)gPitchLatestInput / 65535)*12*N_OCT )+0.5; // closest semitone
|
andrewm@0
|
348 deltaTarget = (semitones[semitoneIndex]-gPitchLatestInput); // delta between pitch and target
|
andrewm@0
|
349 deltaTouch += deltaTarget*deltaWeightI; // update feedback [previous + current]
|
andrewm@0
|
350 }
|
andrewm@0
|
351 else
|
andrewm@0
|
352 deltaTouch = 0;
|
andrewm@0
|
353
|
andrewm@0
|
354 int nextOut = touchPosInt + deltaTarget*deltaWeightP + deltaTouch; // add feedback to touch -> next out
|
andrewm@0
|
355 if(nextOut < 0) nextOut = 0; // clamp
|
andrewm@0
|
356 if(nextOut > 65535) nextOut = 65535; // clamp
|
andrewm@0
|
357 matrixOut[n*8 + DAC_PIN7] = nextOut; // send next nextOut
|
andrewm@0
|
358
|
andrewm@0
|
359
|
andrewm@0
|
360 /*
|
andrewm@0
|
361 * Matrix Out 1, In 1
|
andrewm@0
|
362 *
|
andrewm@0
|
363 * Hysteresis (comparator) oscillator
|
andrewm@0
|
364 * Controls speed of playback
|
andrewm@0
|
365 */
|
andrewm@0
|
366 bool wasRising = gSpeedHysteresisOscillatorRising;
|
andrewm@0
|
367 matrixOut[n*8 + DAC_PIN1] = hysteresis_oscillator(matrixIn[n*8 + ADC_PIN1], 48000, 16000, &gSpeedHysteresisOscillatorRising);
|
andrewm@0
|
368
|
andrewm@0
|
369 // Find interval of zero crossing
|
andrewm@0
|
370 if(wasRising && !gSpeedHysteresisOscillatorRising) {
|
andrewm@0
|
371 int interval = gMatrixSampleCount - gSpeedHysteresisLastTrigger;
|
andrewm@0
|
372
|
andrewm@0
|
373 // Interval since last trigger will be the new hop size; calculate to set speed
|
andrewm@0
|
374 if(interval < 1)
|
andrewm@0
|
375 interval = 1;
|
andrewm@0
|
376 //float speed = (float)gOscBanks[gCurrentOscBank]->getHopSize() / (float)interval;
|
andrewm@0
|
377 float speed = 144.0 / interval; // Normalise to a fixed expected speed
|
andrewm@0
|
378 gOscBanks[gCurrentOscBank]->setSpeed(speed);
|
andrewm@0
|
379
|
andrewm@0
|
380 gSpeedHysteresisLastTrigger = gMatrixSampleCount;
|
andrewm@0
|
381 }
|
andrewm@0
|
382
|
andrewm@0
|
383 /*
|
andrewm@0
|
384 * Matrix Out 2, In 2
|
andrewm@0
|
385 *
|
andrewm@0
|
386 * Feedback (phase shift) oscillator
|
andrewm@0
|
387 * Controls wavetable used for oscillator bank
|
andrewm@0
|
388 */
|
andrewm@0
|
389
|
andrewm@0
|
390 int tableLength = gFeedbackOscillator.process(matrixIn[n*8 + ADC_PIN2], &matrixOut[n*8 + DAC_PIN2]);
|
andrewm@0
|
391 if(tableLength != 0) {
|
andrewm@0
|
392 gFeedbackOscillatorTableLength = tableLength;
|
andrewm@0
|
393 gFeedbackOscillatorTable = gFeedbackOscillator.wavetable();
|
andrewm@0
|
394 gDynamicWavetableNeedsRender = true;
|
andrewm@0
|
395 scheduleAuxiliaryTask(gLowPriorityRender);
|
andrewm@0
|
396 }
|
andrewm@0
|
397
|
andrewm@0
|
398 /*
|
andrewm@0
|
399 * Matrix Out 3, In 3
|
andrewm@0
|
400 *
|
andrewm@0
|
401 * CV loop with delay for time alignment
|
andrewm@0
|
402 * Touch positions from sensor 1
|
andrewm@0
|
403 * Change every 32 samples (ca. 1.5 ms)
|
andrewm@0
|
404 */
|
andrewm@0
|
405 volatile int touchCount = gSensor1LatestTouchCount;
|
andrewm@0
|
406 if(touchCount == 0)
|
andrewm@0
|
407 matrixOut[n*8 + DAC_PIN3] = 0;
|
andrewm@0
|
408 else {
|
andrewm@0
|
409 int touchIndex = (gMatrixSampleCount >> 5) % touchCount;
|
andrewm@0
|
410 matrixOut[n*8 + DAC_PIN3] = gSensor1LatestTouchPos[touchIndex] * 56000.0f;
|
andrewm@0
|
411 if(touchIndex != gSensor1LastTouchIndex) {
|
andrewm@0
|
412 // Just changed to a new touch output. Reset the counter.
|
andrewm@0
|
413 // It will take 2*matrixFrames samples for this output to come back to the
|
andrewm@0
|
414 // ADC input. But we also want to read near the end of the 32 sample block;
|
andrewm@0
|
415 // let's say 24 samples into it.
|
andrewm@0
|
416
|
andrewm@0
|
417 // FIXME this won't work for p > 2
|
andrewm@0
|
418 gSensor1InputDelayCounter = 24 + 2*numMatrixFrames;
|
andrewm@0
|
419 gSensor1InputIndex = touchIndex;
|
andrewm@0
|
420 }
|
andrewm@0
|
421 gSensor1LastTouchIndex = touchIndex;
|
andrewm@0
|
422 }
|
andrewm@0
|
423
|
andrewm@0
|
424 if(gSensor1InputDelayCounter-- >= 0 && touchCount > 0) {
|
andrewm@0
|
425 gSensor1MatrixTouchPos[gSensor1InputIndex] = (float)matrixIn[n*8 + ADC_PIN3] / 65536.0f;
|
andrewm@0
|
426 }
|
andrewm@0
|
427
|
andrewm@0
|
428 /* Matrix Out 4
|
andrewm@0
|
429 *
|
andrewm@0
|
430 * Sensor 1 last pos
|
andrewm@0
|
431 */
|
andrewm@0
|
432 touchPosInt = gSensor1LatestTouchPos[gSensor1LatestTouchIndex] * 65536.0;
|
andrewm@0
|
433 if(touchPosInt < 0) touchPosInt = 0;
|
andrewm@0
|
434 if(touchPosInt > 65535) touchPosInt = 65535;
|
andrewm@0
|
435 matrixOut[n*8 + DAC_PIN4] = touchPosInt;
|
andrewm@0
|
436
|
andrewm@0
|
437 /* Matrix In 4
|
andrewm@0
|
438 *
|
andrewm@0
|
439 * Loop points selector
|
andrewm@0
|
440 */
|
andrewm@0
|
441 gLoopPointsInputBuffer[gLoopPointsInputBufferPointer++] = matrixIn[n*8 + ADC_PIN4];
|
andrewm@0
|
442 if(gLoopPointsInputBufferPointer >= gLoopPointsInputBufferSize) {
|
andrewm@0
|
443 // Find min and max values
|
andrewm@0
|
444 uint16_t loopMax = 0, loopMin = 65535;
|
andrewm@0
|
445 for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
446 if(gLoopPointsInputBuffer[i] < loopMin)
|
andrewm@0
|
447 loopMin = gLoopPointsInputBuffer[i];
|
andrewm@0
|
448 if(gLoopPointsInputBuffer[i] > loopMax/* && gLoopPointsInputBuffer[i] != 65535*/)
|
andrewm@0
|
449 loopMax = gLoopPointsInputBuffer[i];
|
andrewm@0
|
450 }
|
andrewm@0
|
451
|
andrewm@0
|
452 if(loopMin >= loopMax)
|
andrewm@0
|
453 loopMax = loopMin;
|
andrewm@0
|
454
|
andrewm@0
|
455 gLoopPointMax = loopMax;
|
andrewm@0
|
456 gLoopPointMin = loopMin;
|
andrewm@0
|
457 gLoopPointsInputBufferPointer = 0;
|
andrewm@0
|
458 }
|
andrewm@0
|
459
|
andrewm@0
|
460 /* Matrix Out 5
|
andrewm@0
|
461 *
|
andrewm@0
|
462 * Audio In 1 peak detection and peak burst output
|
andrewm@0
|
463 */
|
andrewm@0
|
464
|
andrewm@0
|
465 filterOut[0][n*2+1] *= filterGain;
|
andrewm@0
|
466 float burstOut = PeakBurst[0].getOutput();
|
andrewm@0
|
467 if( burstOut < 0.1)
|
andrewm@0
|
468 {
|
andrewm@0
|
469 if( (prevFiltered[0]>=peakThresh) && (prevFiltered[0]>=filterOut[0][n*2+1]) )
|
andrewm@0
|
470 {
|
andrewm@0
|
471 peak[0] = prevFiltered[0];
|
andrewm@0
|
472 PeakBurst[0].gate(1);
|
andrewm@0
|
473 }
|
andrewm@0
|
474 }
|
andrewm@0
|
475
|
andrewm@0
|
476 PeakBurst[0].process(1);
|
andrewm@0
|
477
|
andrewm@0
|
478 int convAudio = burstOut*peak[0]*65535;
|
andrewm@0
|
479 matrixOut[n*8 + DAC_PIN5] = convAudio;
|
andrewm@0
|
480 prevFiltered[0] = filterOut[0][n*2+1];
|
andrewm@0
|
481 if(prevFiltered[0]>1)
|
andrewm@0
|
482 prevFiltered[0] = 1;
|
andrewm@0
|
483
|
andrewm@0
|
484 /* Matrix In 5
|
andrewm@0
|
485 *
|
andrewm@0
|
486 * Dissonance, via changing frequency motion of partials
|
andrewm@0
|
487 */
|
andrewm@0
|
488 float amount = (float)matrixIn[n*8 + ADC_PIN5] / 65536.0f;
|
andrewm@0
|
489 gOscBanks[gCurrentOscBank]->freqMovement = 1-amount;
|
andrewm@0
|
490
|
andrewm@0
|
491
|
andrewm@0
|
492
|
andrewm@0
|
493
|
andrewm@0
|
494 /* Matrix Out 6
|
andrewm@0
|
495 *
|
andrewm@0
|
496 * Audio In 2 peak detection and peak burst output
|
andrewm@0
|
497 */
|
andrewm@0
|
498
|
andrewm@0
|
499 filterOut[1][n*2+1] *= filterGain;
|
andrewm@0
|
500 burstOut = PeakBurst[1].getOutput();
|
andrewm@0
|
501 if( burstOut < 0.1)
|
andrewm@0
|
502 {
|
andrewm@0
|
503 if( (prevFiltered[1]>=peakThresh) && (prevFiltered[1]>=filterOut[1][n*2+1]) )
|
andrewm@0
|
504 {
|
andrewm@0
|
505 peak[1] = prevFiltered[1];
|
andrewm@0
|
506 PeakBurst[1].gate(1);
|
andrewm@0
|
507 }
|
andrewm@0
|
508 }
|
andrewm@0
|
509
|
andrewm@0
|
510 PeakBurst[1].process(1);
|
andrewm@0
|
511
|
andrewm@0
|
512 convAudio = burstOut*peak[1]*65535;
|
andrewm@0
|
513 matrixOut[n*8 + DAC_PIN6] = convAudio;
|
andrewm@0
|
514 prevFiltered[1] = filterOut[1][n*2+1];
|
andrewm@0
|
515 if(prevFiltered[1]>1)
|
andrewm@0
|
516 prevFiltered[1] = 1;
|
andrewm@0
|
517
|
andrewm@0
|
518 /* Matrix In 6
|
andrewm@0
|
519 *
|
andrewm@0
|
520 * Sound selector
|
andrewm@0
|
521 */
|
andrewm@0
|
522 if(!gIsLoading) {
|
andrewm@0
|
523 // Use hysteresis to avoid jumping back and forth between sounds
|
andrewm@0
|
524 if(gOscBanks.size() > 1) {
|
andrewm@0
|
525 int input = matrixIn[n*8 + ADC_PIN6];
|
andrewm@0
|
526 const int hystValue = 16000;
|
andrewm@0
|
527
|
andrewm@0
|
528 int upHysteresisValue = ((gCurrentOscBank + 1) * 65536 + hystValue) / gOscBanks.size();
|
andrewm@0
|
529 int downHysteresisValue = (gCurrentOscBank * 65536 - hystValue) / gOscBanks.size();
|
andrewm@0
|
530
|
andrewm@0
|
531 if(input > upHysteresisValue || input < downHysteresisValue) {
|
andrewm@0
|
532 gNextOscBank = input * gOscBanks.size() / 65536;
|
andrewm@0
|
533 if(gNextOscBank < 0)
|
andrewm@0
|
534 gNextOscBank = 0;
|
andrewm@0
|
535 if((unsigned)gNextOscBank >= gOscBanks.size())
|
andrewm@0
|
536 gNextOscBank = gOscBanks.size() - 1;
|
andrewm@0
|
537 }
|
andrewm@0
|
538 }
|
andrewm@0
|
539 }
|
andrewm@0
|
540
|
andrewm@0
|
541 /*
|
andrewm@0
|
542 * Matrix In 7
|
andrewm@0
|
543 *
|
andrewm@0
|
544 * FSR from primary touch sensor
|
andrewm@0
|
545 * Value ranges from 0-1799
|
andrewm@0
|
546 */
|
andrewm@0
|
547 gLastFSRValue = matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
548 //gLastFSRValue = 1799 - matrixIn[n*8 + ADC_PIN7] * (1799.0 / 65535.0);
|
andrewm@0
|
549 //dbox_printf("%i\n",gLastFSRValue);
|
andrewm@0
|
550
|
andrewm@0
|
551 gMatrixSampleCount++;
|
andrewm@0
|
552 }
|
andrewm@0
|
553
|
andrewm@0
|
554 #endif /* DBOX_CAPE_TEST */
|
andrewm@0
|
555 }
|
andrewm@0
|
556
|
andrewm@0
|
557 // Medium-priority render function used for audio hop calculations
|
andrewm@0
|
558 void render_medium_prio()
|
andrewm@0
|
559 {
|
andrewm@0
|
560
|
andrewm@0
|
561 if(gOscillatorNeedsRender) {
|
andrewm@0
|
562 gOscillatorNeedsRender = false;
|
andrewm@0
|
563
|
andrewm@0
|
564 /* Render one frame into the write buffer */
|
andrewm@0
|
565 memset(gOscillatorBufferWrite, 0, gOscBanks[gCurrentOscBank]->hopCounter * gChannels * sizeof(float));
|
andrewm@0
|
566
|
andrewm@0
|
567 oscillator_bank_neon(gOscBanks[gCurrentOscBank]->hopCounter, gOscillatorBufferWrite,
|
andrewm@0
|
568 gOscBanks[gCurrentOscBank]->actPartNum, gOscBanks[gCurrentOscBank]->lookupTableSize,
|
andrewm@0
|
569 gOscBanks[gCurrentOscBank]->oscillatorPhases, gOscBanks[gCurrentOscBank]->oscillatorNormFrequencies,
|
andrewm@0
|
570 gOscBanks[gCurrentOscBank]->oscillatorAmplitudes,
|
andrewm@0
|
571 gOscBanks[gCurrentOscBank]->oscillatorNormFreqDerivatives,
|
andrewm@0
|
572 gOscBanks[gCurrentOscBank]->oscillatorAmplitudeDerivatives,
|
andrewm@0
|
573 /*gOscBanks[gCurrentOscBank]->lookupTable*/gDynamicWavetable);
|
andrewm@0
|
574
|
andrewm@0
|
575 gOscillatorBufferWriteCurrentSize = gOscBanks[gCurrentOscBank]->hopCounter * gChannels;
|
andrewm@0
|
576
|
andrewm@0
|
577 /* Update the pitch right before the hop
|
andrewm@0
|
578 * Total CV range +/- N_OCT octaves
|
andrewm@0
|
579 */
|
andrewm@0
|
580 float pitch = (float)gPitchLatestInput / octaveSplitter - N_OCT/2;
|
andrewm@0
|
581 //gOscBanks[gCurrentOscBank]->pitchMultiplier = powf(2.0f, pitch);
|
andrewm@0
|
582 gOscBanks[gCurrentOscBank]->pitchMultiplier = pow(2.0f, pitch);
|
andrewm@0
|
583
|
andrewm@0
|
584 #ifdef FIXME_LATER // This doesn't work very well yet
|
andrewm@0
|
585 gOscBanks[gCurrentOscBank]->filterNum = gSensor1LatestTouchCount;
|
andrewm@0
|
586 float freqScaler = gOscBanks[gCurrentOscBank]->getFrequencyScaler();
|
andrewm@0
|
587 for(int i=0; i < gOscBanks[gCurrentOscBank]->filterNum; i++)
|
andrewm@0
|
588 {
|
andrewm@0
|
589 // touch pos is linear but freqs are log
|
andrewm@0
|
590 gOscBanks[gCurrentOscBank]->filterFreqs[i] = ((expf(gSensor1MatrixTouchPos[i]*4)-1)/(expf(4)-1))*gOscBanks[gCurrentOscBank]->filterMaxF*freqScaler;
|
andrewm@0
|
591 gOscBanks[gCurrentOscBank]->filterQ[i] = gSensor1LatestTouchSizes[i];
|
andrewm@0
|
592 if(gOscBanks[gCurrentOscBank]->filterFreqs[i]>500*freqScaler)
|
andrewm@0
|
593 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1+100000*( (gOscBanks[gCurrentOscBank]->filterFreqs[i]-500*freqScaler)/(gOscBanks[gCurrentOscBank]->filterMaxF-500)*freqScaler );
|
andrewm@0
|
594 else
|
andrewm@0
|
595 gOscBanks[gCurrentOscBank]->filterPadding[i] = 1;
|
andrewm@0
|
596 }
|
andrewm@0
|
597 #endif
|
andrewm@0
|
598
|
andrewm@0
|
599 RTIME ticks = rt_timer_read();
|
andrewm@0
|
600 SRTIME ns = rt_timer_tsc2ns(ticks);
|
andrewm@0
|
601 SRTIME delta = ns-prevChangeNs;
|
andrewm@0
|
602
|
andrewm@0
|
603 // switch to next bank cannot be too frequent, to avoid seg fault! [for example sef fault happens when removing both VDD and GND from breadboard]
|
andrewm@0
|
604 if(gNextOscBank != gCurrentOscBank && delta>100000000) {
|
andrewm@0
|
605
|
andrewm@0
|
606 /*printf("ticks %llu\n", (unsigned long long)ticks);
|
andrewm@0
|
607 printf("ns %llu\n", (unsigned long long)ns);
|
andrewm@0
|
608 printf("prevChangeNs %llu\n", (unsigned long long)prevChangeNs);
|
andrewm@0
|
609 printf("-------------------------->%llud\n", (unsigned long long)(ns-prevChangeNs));*/
|
andrewm@0
|
610
|
andrewm@0
|
611 prevChangeNs = ns;
|
andrewm@0
|
612 dbox_printf("Changing to bank %d...\n", gNextOscBank);
|
andrewm@0
|
613 if(gOscBanks[gCurrentOscBank]->state==bank_playing){
|
andrewm@0
|
614 gOscBanks[gCurrentOscBank]->stop();
|
andrewm@0
|
615 }
|
andrewm@0
|
616
|
andrewm@0
|
617 gCurrentOscBank = gNextOscBank;
|
andrewm@0
|
618 gOscBanks[gCurrentOscBank]->hopNumTh = 0;
|
andrewm@0
|
619 }
|
andrewm@0
|
620 else {
|
andrewm@0
|
621 /* Advance to the next oscillator frame */
|
andrewm@0
|
622 gOscBanks[gCurrentOscBank]->nextHop();
|
andrewm@0
|
623 }
|
andrewm@0
|
624 }
|
andrewm@0
|
625 }
|
andrewm@0
|
626
|
andrewm@0
|
627 // Lower-priority render function which performs matrix calculations
|
andrewm@0
|
628 // State should be transferred in via global variables
|
andrewm@0
|
629 void render_low_prio()
|
andrewm@0
|
630 {
|
andrewm@0
|
631 gPRU->setGPIOTestPin();
|
andrewm@0
|
632 if(gDynamicWavetableNeedsRender) {
|
andrewm@0
|
633 // Find amplitude of wavetable
|
andrewm@0
|
634 float meanAmplitude = 0;
|
andrewm@0
|
635 float sineMix;
|
andrewm@0
|
636
|
andrewm@0
|
637 for(int i = 0; i < gFeedbackOscillatorTableLength; i++) {
|
andrewm@0
|
638 //meanAmplitude += fabsf(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
639 meanAmplitude += fabs(gFeedbackOscillatorTable[i]);
|
andrewm@0
|
640 }
|
andrewm@0
|
641 meanAmplitude /= (float)gFeedbackOscillatorTableLength;
|
andrewm@0
|
642
|
andrewm@0
|
643 if(meanAmplitude > 0.35)
|
andrewm@0
|
644 sineMix = 0;
|
andrewm@0
|
645 else
|
andrewm@0
|
646 sineMix = (.35 - meanAmplitude) / .35;
|
andrewm@0
|
647
|
andrewm@0
|
648 //dbox_printf("amp %f mix %f\n", meanAmplitude, sineMix);
|
andrewm@0
|
649
|
andrewm@0
|
650 // Copy to main wavetable
|
andrewm@0
|
651 wavetable_interpolate(gFeedbackOscillatorTableLength, gDynamicWavetableLength,
|
andrewm@0
|
652 gFeedbackOscillatorTable, gDynamicWavetable,
|
andrewm@0
|
653 gOscBanks[gCurrentOscBank]->lookupTable, sineMix);
|
andrewm@0
|
654 }
|
andrewm@0
|
655
|
andrewm@0
|
656 if(gLoopPointMin >= 60000 && gLoopPointMax >= 60000) {
|
andrewm@0
|
657 // KLUDGE!
|
andrewm@0
|
658 if(gCurrentOscBank == 0)
|
andrewm@0
|
659 gOscBanks[gCurrentOscBank]->setLoopHops(50, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.6) - 1);
|
andrewm@0
|
660 else
|
andrewm@0
|
661 gOscBanks[gCurrentOscBank]->setLoopHops(5, ((float)gOscBanks[gCurrentOscBank]->getLastHop() * 0.7) - 1);
|
andrewm@0
|
662 }
|
andrewm@0
|
663 else {
|
andrewm@0
|
664 float normLoopPointMin = (float)gLoopPointMin * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
|
andrewm@0
|
665 float normLoopPointMax = (float)gLoopPointMax * gOscBanks[gCurrentOscBank]->getLastHop() / 65535.0;
|
andrewm@0
|
666
|
andrewm@0
|
667 int intLoopPointMin = normLoopPointMin;
|
andrewm@0
|
668 if(intLoopPointMin < 1)
|
andrewm@0
|
669 intLoopPointMin = 1;
|
andrewm@0
|
670 int intLoopPointMax = normLoopPointMax;
|
andrewm@0
|
671 if(intLoopPointMax <= intLoopPointMin)
|
andrewm@0
|
672 intLoopPointMax = intLoopPointMin + 1;
|
andrewm@0
|
673 if(intLoopPointMax > gOscBanks[gCurrentOscBank]->getLastHop() - 1)
|
andrewm@0
|
674 intLoopPointMax = gOscBanks[gCurrentOscBank]->getLastHop() - 1;
|
andrewm@0
|
675
|
andrewm@0
|
676 //dbox_printf("Loop points %d-%d / %d-%d\n", gLoopPointMin, gLoopPointMax, intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
677
|
andrewm@0
|
678 /* WORKS, jsut need to fix the glitch when jumps!
|
andrewm@0
|
679 * *int currentHop = gOscBanks[gCurrentOscBank]->getCurrentHop();
|
andrewm@0
|
680 if(currentHop < intLoopPointMin -1 )
|
andrewm@0
|
681 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMin + 1);
|
andrewm@0
|
682 else if(currentHop > intLoopPointMax + 1)
|
andrewm@0
|
683 gOscBanks[gCurrentOscBank]->setJumpHop(intLoopPointMax - 1);*/
|
andrewm@0
|
684 gOscBanks[gCurrentOscBank]->setLoopHops(intLoopPointMin, intLoopPointMax);
|
andrewm@0
|
685 }
|
andrewm@0
|
686
|
andrewm@0
|
687 if(gIsLoading)
|
andrewm@0
|
688 gStatusLED.blink(25, 75); // Blink quickly until load finished
|
andrewm@0
|
689 else
|
andrewm@0
|
690 gStatusLED.blink(250 / gOscBanks[gCurrentOscBank]->getSpeed(), 250 / gOscBanks[gCurrentOscBank]->getSpeed());
|
andrewm@0
|
691 gPRU->clearGPIOTestPin();
|
andrewm@0
|
692
|
andrewm@0
|
693 // static int counter = 32;
|
andrewm@0
|
694 // if(--counter == 0) {
|
andrewm@0
|
695 // for(int i = 0; i < gLoopPointsInputBufferSize; i++) {
|
andrewm@0
|
696 // dbox_printf("%d ", gLoopPointsInputBuffer[i]);
|
andrewm@0
|
697 // if(i % 32 == 31)
|
andrewm@0
|
698 // dbox_printf("\n");
|
andrewm@0
|
699 // }
|
andrewm@0
|
700 // dbox_printf("\n\n");
|
andrewm@0
|
701 // counter = 32;
|
andrewm@0
|
702 // }
|
andrewm@0
|
703
|
andrewm@0
|
704 //dbox_printf("min %d max %d\n", gLoopPointMin, gLoopPointMax);
|
andrewm@0
|
705 }
|
andrewm@0
|
706
|
andrewm@0
|
707 // Clean up at the end of render
|
andrewm@0
|
708 void cleanup_render()
|
andrewm@0
|
709 {
|
andrewm@0
|
710 free(gOscillatorBuffer1);
|
andrewm@0
|
711 free(gOscillatorBuffer2);
|
andrewm@0
|
712 free(gDynamicWavetable);
|
andrewm@0
|
713 }
|
andrewm@0
|
714
|
andrewm@0
|
715 // Interpolate one wavetable into another. The output size
|
andrewm@0
|
716 // does not include the guard point at the end which will be identical
|
andrewm@0
|
717 // to the first point
|
andrewm@0
|
718 void wavetable_interpolate(int numSamplesIn, int numSamplesOut,
|
andrewm@0
|
719 float *tableIn, float *tableOut,
|
andrewm@0
|
720 float *sineTable, float sineMix)
|
andrewm@0
|
721 {
|
andrewm@0
|
722 float fractionalScaler = (float)numSamplesIn / (float)numSamplesOut;
|
andrewm@0
|
723
|
andrewm@0
|
724 for(int k = 0; k < numSamplesOut; k++) {
|
andrewm@0
|
725 float fractionalIndex = (float) k * fractionalScaler;
|
andrewm@0
|
726 //int sB = (int)floorf(fractionalIndex);
|
andrewm@0
|
727 int sB = (int)floor(fractionalIndex);
|
andrewm@0
|
728 int sA = sB + 1;
|
andrewm@0
|
729 if(sA >= numSamplesIn)
|
andrewm@0
|
730 sA = 0;
|
andrewm@0
|
731 float fraction = fractionalIndex - sB;
|
andrewm@0
|
732 tableOut[k] = fraction * tableIn[sA] + (1.0f - fraction) * tableIn[sB];
|
andrewm@0
|
733 tableOut[k] = sineMix * sineTable[k] + (1.0 - sineMix) * tableOut[k];
|
andrewm@0
|
734 }
|
andrewm@0
|
735
|
andrewm@0
|
736 tableOut[numSamplesOut] = tableOut[0];
|
andrewm@0
|
737 }
|
andrewm@0
|
738
|
andrewm@0
|
739 // Create a hysteresis oscillator with a matrix input and output
|
andrewm@0
|
740 inline uint16_t hysteresis_oscillator(uint16_t input, uint16_t risingThreshold, uint16_t fallingThreshold, bool *rising)
|
andrewm@0
|
741 {
|
andrewm@0
|
742 uint16_t value;
|
andrewm@0
|
743
|
andrewm@0
|
744 if(*rising) {
|
andrewm@0
|
745 if(input > risingThreshold) {
|
andrewm@0
|
746 *rising = false;
|
andrewm@0
|
747 value = 0;
|
andrewm@0
|
748 }
|
andrewm@0
|
749 else
|
andrewm@0
|
750 value = 65535;
|
andrewm@0
|
751 }
|
andrewm@0
|
752 else {
|
andrewm@0
|
753 if(input < fallingThreshold) {
|
andrewm@0
|
754 *rising = true;
|
andrewm@0
|
755 value = 65535;
|
andrewm@0
|
756 }
|
andrewm@0
|
757 else
|
andrewm@0
|
758 value = 0;
|
andrewm@0
|
759 }
|
andrewm@0
|
760
|
andrewm@0
|
761 return value;
|
andrewm@0
|
762 }
|
andrewm@0
|
763
|
andrewm@0
|
764 #ifdef DBOX_CAPE_TEST
|
andrewm@0
|
765 // Test the functionality of the D-Box cape by checking each input and output
|
andrewm@0
|
766 // Loopback cable from ADC to DAC needed
|
andrewm@0
|
767 void render_capetest(int numMatrixFrames, int numAudioFrames, float *audioIn, float *audioOut,
|
andrewm@0
|
768 uint16_t *matrixIn, uint16_t *matrixOut)
|
andrewm@0
|
769 {
|
andrewm@0
|
770 static float phase = 0.0;
|
andrewm@0
|
771 static int sampleCounter = 0;
|
andrewm@0
|
772 static int invertChannel = 0;
|
andrewm@0
|
773
|
andrewm@0
|
774 // Play a sine wave on the audio output
|
andrewm@0
|
775 for(int n = 0; n < numAudioFrames; n++) {
|
andrewm@0
|
776 audioOut[2*n] = audioOut[2*n + 1] = 0.5*sinf(phase);
|
andrewm@0
|
777 phase += 2.0 * M_PI * 440.0 / 44100.0;
|
andrewm@0
|
778 if(phase >= 2.0 * M_PI)
|
andrewm@0
|
779 phase -= 2.0 * M_PI;
|
andrewm@0
|
780 }
|
andrewm@0
|
781
|
andrewm@0
|
782 for(int n = 0; n < numMatrixFrames; n++) {
|
andrewm@0
|
783 // Change outputs every 512 samples
|
andrewm@0
|
784 if(sampleCounter < 512) {
|
andrewm@0
|
785 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
786 if(k == invertChannel)
|
andrewm@0
|
787 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
788 else
|
andrewm@0
|
789 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
790 }
|
andrewm@0
|
791 }
|
andrewm@0
|
792 else {
|
andrewm@0
|
793 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
794 if(k == invertChannel)
|
andrewm@0
|
795 matrixOut[n*8 + k] = 0;
|
andrewm@0
|
796 else
|
andrewm@0
|
797 matrixOut[n*8 + k] = 50000;
|
andrewm@0
|
798 }
|
andrewm@0
|
799 }
|
andrewm@0
|
800
|
andrewm@0
|
801 // Read after 256 samples: input should be low
|
andrewm@0
|
802 if(sampleCounter == 256) {
|
andrewm@0
|
803 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
804 if(k == invertChannel) {
|
andrewm@0
|
805 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
806 dbox_printf("FAIL channel %d -- output HIGH input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
807 }
|
andrewm@0
|
808 }
|
andrewm@0
|
809 else {
|
andrewm@0
|
810 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
811 dbox_printf("FAIL channel %d -- output LOW input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
812 }
|
andrewm@0
|
813 }
|
andrewm@0
|
814 }
|
andrewm@0
|
815 }
|
andrewm@0
|
816 else if(sampleCounter == 768) {
|
andrewm@0
|
817 for(int k = 0; k < 8; k++) {
|
andrewm@0
|
818 if(k == invertChannel) {
|
andrewm@0
|
819 if(matrixIn[n*8 + k] > 2048) {
|
andrewm@0
|
820 dbox_printf("FAIL channel %d -- output LOW input %d (inverted)\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
821 }
|
andrewm@0
|
822 }
|
andrewm@0
|
823 else {
|
andrewm@0
|
824 if(matrixIn[n*8 + k] < 50000) {
|
andrewm@0
|
825 dbox_printf("FAIL channel %d -- output HIGH input %d\n", k, matrixIn[n*8 + k]);
|
andrewm@0
|
826 }
|
andrewm@0
|
827 }
|
andrewm@0
|
828 }
|
andrewm@0
|
829 }
|
andrewm@0
|
830
|
andrewm@0
|
831 if(++sampleCounter >= 1024) {
|
andrewm@0
|
832 sampleCounter = 0;
|
andrewm@0
|
833 invertChannel++;
|
andrewm@0
|
834 if(invertChannel >= 8)
|
andrewm@0
|
835 invertChannel = 0;
|
andrewm@0
|
836 }
|
andrewm@0
|
837 }
|
andrewm@0
|
838 }
|
andrewm@0
|
839 #endif
|
andrewm@0
|
840
|
andrewm@0
|
841
|